1 /** 2 * Error Functions and Normal Distribution. 3 * 4 * Copyright: 5 * Copyright (C) 1984, 1995, 2000 Stephen L. Moshier 6 * Code taken from the Cephes Math Library Release 2.3: January, 1995 7 * Some parts copyright (c) 2009-2016 dunnhumby Germany GmbH. 8 * All rights reserved. 9 * 10 * License: 11 * Tango Dual License: 3-Clause BSD License / Academic Free License v3.0. 12 * See LICENSE_TANGO.txt for details. 13 * 14 * Authors: Stephen L. Moshier, ported to D by Don Clugston 15 * 16 */ 17 /** 18 * Macros: 19 * NAN = $(RED NAN) 20 * SUP = <span style="vertical-align:super;font-size:smaller">$0</span> 21 * GAMMA = Γ 22 * INTEGRAL = ∫ 23 * INTEGRATE = $(BIG ∫<sub>$(SMALL $1)</sub><sup>$2</sup>) 24 * POWER = $1<sup>$2</sup> 25 * BIGSUM = $(BIG Σ <sup>$2</sup><sub>$(SMALL $1)</sub>) 26 * CHOOSE = $(BIG () <sup>$(SMALL $1)</sup><sub>$(SMALL $2)</sub> $(BIG )) 27 * TABLE_SV = <table border=1 cellpadding=4 cellspacing=0> 28 * <caption>Special Values</caption> 29 * $0</table> 30 * SVH = $(TR $(TH $1) $(TH $2)) 31 * SV = $(TR $(TD $1) $(TD $2)) 32 */ 33 module ocean.math.ErrorFunction; 34 35 import ocean.math.Math; 36 import ocean.math.IEEE; 37 import ocean.core.Verify; 38 39 version (unittest) 40 { 41 import ocean.core.Test; 42 } 43 44 45 static immutable real SQRT2PI = 0x1.40d931ff62705966p+1L; // 2.5066282746310005024 46 static immutable real EXP_2 = 0.13533528323661269189L; /* exp(-2) */ 47 48 private { 49 50 /* erfc(x) = exp(-x^2) P(1/x)/Q(1/x) 51 1/8 <= 1/x <= 1 52 Peak relative error 5.8e-21 */ 53 static immutable real [] P = [ -0x1.30dfa809b3cc6676p-17, 0x1.38637cd0913c0288p+18, 54 0x1.2f015e047b4476bp+22, 0x1.24726f46aa9ab08p+25, 0x1.64b13c6395dc9c26p+27, 55 0x1.294c93046ad55b5p+29, 0x1.5962a82f92576dap+30, 0x1.11a709299faba04ap+31, 56 0x1.11028065b087be46p+31, 0x1.0d8ef40735b097ep+30 57 ]; 58 59 static immutable real [] Q = [ 0x1.14d8e2a72dec49f4p+19, 0x1.0c880ff467626e1p+23, 60 0x1.04417ef060b58996p+26, 0x1.404e61ba86df4ebap+28, 0x1.0f81887bc82b873ap+30, 61 0x1.4552a5e39fb49322p+31, 0x1.11779a0ceb2a01cep+32, 0x1.3544dd691b5b1d5cp+32, 62 0x1.a91781f12251f02ep+31, 0x1.0d8ef3da605a1c86p+30, 1.0 63 ]; 64 65 66 /* erfc(x) = exp(-x^2) 1/x R(1/x^2) / S(1/x^2) 67 1/128 <= 1/x < 1/8 68 Peak relative error 1.9e-21 */ 69 static immutable real [] R = [ 0x1.b9f6d8b78e22459ep-6, 0x1.1b84686b0a4ea43ap-1, 70 0x1.b8f6aebe96000c2ap+1, 0x1.cb1dbedac27c8ec2p+2, 0x1.cf885f8f572a4c14p+1 71 ]; 72 73 static immutable real [] S = [ 74 0x1.87ae3cae5f65eb5ep-5, 0x1.01616f266f306d08p+0, 0x1.a4abe0411eed6c22p+2, 75 0x1.eac9ce3da600abaap+3, 0x1.5752a9ac2faebbccp+3, 1.0 76 ]; 77 78 /* erf(x) = x P(x^2)/Q(x^2) 79 0 <= x <= 1 80 Peak relative error 7.6e-23 */ 81 static immutable real [] T = [ 0x1.0da01654d757888cp+20, 0x1.2eb7497bc8b4f4acp+17, 82 0x1.79078c19530f72a8p+15, 0x1.4eaf2126c0b2c23p+11, 0x1.1f2ea81c9d272a2ep+8, 83 0x1.59ca6e2d866e625p+2, 0x1.c188e0b67435faf4p-4 84 ]; 85 86 static immutable real [] U = [ 0x1.dde6025c395ae34ep+19, 0x1.c4bc8b6235df35aap+18, 87 0x1.8465900e88b6903ap+16, 0x1.855877093959ffdp+13, 0x1.e5c44395625ee358p+9, 88 0x1.6a0fed103f1c68a6p+5, 1.0 89 ]; 90 91 } 92 93 /** 94 * Complementary error function 95 * 96 * erfc(x) = 1 - erf(x), and has high relative accuracy for 97 * values of x far from zero. (For values near zero, use erf(x)). 98 * 99 * 1 - erf(x) = 2/ $(SQRT)(π) 100 * $(INTEGRAL x, $(INFINITY)) exp( - $(POWER t, 2)) dt 101 * 102 * 103 * For small x, erfc(x) = 1 - erf(x); otherwise rational 104 * approximations are computed. 105 * 106 * A special function expx2(x) is used to suppress error amplification 107 * in computing exp(-x^2). 108 */ 109 real erfc(real a) 110 { 111 if (a == real.infinity) 112 return 0.0; 113 if (a == -real.infinity) 114 return 2.0; 115 116 real x; 117 118 if (a < 0.0L ) 119 x = -a; 120 else 121 x = a; 122 if (x < 1.0) 123 return 1.0 - erf(a); 124 125 real z = -a * a; 126 127 if (z < -MAXLOG){ 128 // mtherr( "erfcl", UNDERFLOW ); 129 if (a < 0) return 2.0; 130 else return 0.0; 131 } 132 133 /* Compute z = exp(z). */ 134 z = expx2(a, -1); 135 real y = 1.0/x; 136 137 real p, q; 138 139 if( x < 8.0 ) y = z * rationalPoly(y, P, Q); 140 else y = z * y * rationalPoly(y * y, R, S); 141 142 if (a < 0.0L) 143 y = 2.0L - y; 144 145 if (y == 0.0) { 146 // mtherr( "erfcl", UNDERFLOW ); 147 if (a < 0) return 2.0; 148 else return 0.0; 149 } 150 151 return y; 152 } 153 154 155 private { 156 /* Exponentially scaled erfc function 157 exp(x^2) erfc(x) 158 valid for x > 1. 159 Use with normalDistribution and expx2. */ 160 161 real erfce(real x) 162 { 163 real p, q; 164 165 real y = 1.0/x; 166 167 if (x < 8.0) { 168 return rationalPoly( y, P, Q); 169 } else { 170 return y * rationalPoly(y*y, R, S); 171 } 172 } 173 174 } 175 176 /** 177 * Error function 178 * 179 * The integral is 180 * 181 * erf(x) = 2/ $(SQRT)(π) 182 * $(INTEGRAL 0, x) exp( - $(POWER t, 2)) dt 183 * 184 * The magnitude of x is limited to about 106.56 for IEEE 80-bit 185 * arithmetic; 1 or -1 is returned outside this range. 186 * 187 * For 0 <= |x| < 1, a rational polynomials are used; otherwise 188 * erf(x) = 1 - erfc(x). 189 * 190 * ACCURACY: 191 * Relative error: 192 * arithmetic domain # trials peak rms 193 * IEEE 0,1 50000 2.0e-19 5.7e-20 194 */ 195 real erf(real x) 196 { 197 if (x == 0.0) 198 return x; // deal with negative zero 199 if (x == -real.infinity) 200 return -1.0; 201 if (x == real.infinity) 202 return 1.0; 203 if (abs(x) > 1.0L) 204 return 1.0L - erfc(x); 205 206 real z = x * x; 207 return x * rationalPoly(z, T, U); 208 } 209 210 unittest { 211 // High resolution test points. 212 static immutable real erfc0_250 = 0.723663330078125 + 1.0279753638067014931732235184287934646022E-5; 213 static immutable real erfc0_375 = 0.5958709716796875 + 1.2118885490201676174914080878232469565953E-5; 214 static immutable real erfc0_500 = 0.4794921875 + 7.9346869534623172533461080354712635484242E-6; 215 static immutable real erfc0_625 = 0.3767547607421875 + 4.3570693945275513594941232097252997287766E-6; 216 static immutable real erfc0_750 = 0.2888336181640625 + 1.0748182422368401062165408589222625794046E-5; 217 static immutable real erfc0_875 = 0.215911865234375 + 1.3073705765341685464282101150637224028267E-5; 218 static immutable real erfc1_000 = 0.15728759765625 + 1.1609394035130658779364917390740703933002E-5; 219 static immutable real erfc1_125 = 0.111602783203125 + 8.9850951672359304215530728365232161564636E-6; 220 221 static immutable real erf0_875 = (1-0.215911865234375) - 1.3073705765341685464282101150637224028267E-5; 222 223 224 test(feqrel(erfc(0.250L), erfc0_250 )>=real.mant_dig-1); 225 test(feqrel(erfc(0.375L), erfc0_375 )>=real.mant_dig-0); 226 test(feqrel(erfc(0.500L), erfc0_500 )>=real.mant_dig-1); 227 test(feqrel(erfc(0.625L), erfc0_625 )>=real.mant_dig-1); 228 test(feqrel(erfc(0.750L), erfc0_750 )>=real.mant_dig-1); 229 test(feqrel(erfc(0.875L), erfc0_875 )>=real.mant_dig-4); 230 version(FailsOnLinux) test(feqrel(erfc(1.000L), erfc1_000 )>=real.mant_dig-0); 231 test(feqrel(erfc(1.125L), erfc1_125 )>=real.mant_dig-2); 232 test(feqrel(erf(0.875L), erf0_875 )>=real.mant_dig-1); 233 // The DMC implementation of erfc() fails this next test (just) 234 test(feqrel(erfc(4.1L),0.67000276540848983727e-8L)>=real.mant_dig-4); 235 236 test(isIdentical(erf(0.0),0.0)); 237 test(isIdentical(erf(-0.0),-0.0)); 238 test(erf(real.infinity) == 1.0); 239 test(erf(-real.infinity) == -1.0); 240 test(isIdentical(erf(NaN(0xDEF)),NaN(0xDEF))); 241 test(isIdentical(erfc(NaN(0xDEF)),NaN(0xDEF))); 242 test(isIdentical(erfc(real.infinity),0.0)); 243 test(erfc(-real.infinity) == 2.0); 244 test(erfc(0) == 1.0); 245 } 246 247 /* 248 * Exponential of squared argument 249 * 250 * Computes y = exp(x*x) while suppressing error amplification 251 * that would ordinarily arise from the inexactness of the 252 * exponential argument x*x. 253 * 254 * If sign < 0, the result is inverted; i.e., y = exp(-x*x) . 255 * 256 * ACCURACY: 257 * Relative error: 258 * arithmetic domain # trials peak rms 259 * IEEE -106.566, 106.566 10^5 1.6e-19 4.4e-20 260 */ 261 262 real expx2(real x, int sign) 263 { 264 /* 265 Cephes Math Library Release 2.9: June, 2000 266 Copyright 2000 by Stephen L. Moshier 267 */ 268 static immutable real M = 32768.0; 269 static immutable real MINV = 3.0517578125e-5L; 270 271 x = abs(x); 272 if (sign < 0) 273 x = -x; 274 275 /* Represent x as an exact multiple of M plus a residual. 276 M is a power of 2 chosen so that exp(m * m) does not overflow 277 or underflow and so that |x - m| is small. */ 278 real m = MINV * floor(M * x + 0.5L); 279 real f = x - m; 280 281 /* x^2 = m^2 + 2mf + f^2 */ 282 real u = m * m; 283 real u1 = 2 * m * f + f * f; 284 285 if (sign < 0) { 286 u = -u; 287 u1 = -u1; 288 } 289 290 if ((u+u1) > MAXLOG) 291 return real.infinity; 292 293 /* u is exact, u1 is small. */ 294 return exp(u) * exp(u1); 295 } 296 297 298 package { 299 /* 300 Computes the normal distribution function. 301 302 The normal (or Gaussian, or bell-shaped) distribution is 303 defined as: 304 305 normalDist(x) = 1/$(SQRT) π $(INTEGRAL -$(INFINITY), x) exp( - $(POWER t, 2)/2) dt 306 = 0.5 + 0.5 * erf(x/sqrt(2)) 307 = 0.5 * erfc(- x/sqrt(2)) 308 309 To maintain accuracy at high values of x, use 310 normalDistribution(x) = 1 - normalDistribution(-x). 311 312 Accuracy: 313 Within a few bits of machine resolution over the entire 314 range. 315 316 References: 317 $(LINK http://www.netlib.org/cephes/ldoubdoc.html), 318 G. Marsaglia, "Evaluating the Normal Distribution", 319 Journal of Statistical Software <b>11</b>, (July 2004). 320 */ 321 real normalDistributionImpl(real a) 322 { 323 real x = a * SQRT1_2; 324 real z = abs(x); 325 326 if( z < 1.0 ) 327 return 0.5L + 0.5L * erf(x); 328 else { 329 /* See below for erfce. */ 330 real y = 0.5L * erfce(z); 331 /* Multiply by exp(-x^2 / 2) */ 332 z = expx2(a, -1); 333 y = y * sqrt(z); 334 if( x > 0.0L ) 335 y = 1.0L - y; 336 return y; 337 } 338 } 339 340 } 341 342 unittest { 343 test(fabs(normalDistributionImpl(1L) - (0.841344746068543))< 0.0000000000000005); 344 test(isIdentical(normalDistributionImpl(NaN(0x325)), NaN(0x325))); 345 } 346 347 package { 348 /* 349 * Inverse of Normal distribution function 350 * 351 * Returns the argument, x, for which the area under the 352 * Normal probability density function (integrated from 353 * minus infinity to x) is equal to p. 354 * 355 * For small arguments 0 < p < exp(-2), the program computes 356 * z = sqrt( -2 log(p) ); then the approximation is 357 * x = z - log(z)/z - (1/z) P(1/z) / Q(1/z) . 358 * For larger arguments, x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) , 359 * where w = p - 0.5 . 360 */ 361 real normalDistributionInvImpl(real p) 362 { 363 verify(p>=0.0L && p<=1.0L, "Domain error"); 364 365 static immutable real[] P0 = [ -0x1.758f4d969484bfdcp-7, 0x1.53cee17a59259dd2p-3, 366 -0x1.ea01e4400a9427a2p-1, 0x1.61f7504a0105341ap+1, -0x1.09475a594d0399f6p+2, 367 0x1.7c59e7a0df99e3e2p+1, -0x1.87a81da52edcdf14p-1, 0x1.1fb149fd3f83600cp-7 368 ]; 369 370 static immutable real[] Q0 = [ -0x1.64b92ae791e64bb2p-7, 0x1.7585c7d597298286p-3, 371 -0x1.40011be4f7591ce6p+0, 0x1.1fc067d8430a425ep+2, -0x1.21008ffb1e7ccdf2p+3, 372 0x1.3d1581cf9bc12fccp+3, -0x1.53723a89fd8f083cp+2, 1.0 373 ]; 374 375 static immutable real[] P1 = [ 0x1.20ceea49ea142f12p-13, 0x1.cbe8a7267aea80bp-7, 376 0x1.79fea765aa787c48p-2, 0x1.d1f59faa1f4c4864p+1, 0x1.1c22e426a013bb96p+4, 377 0x1.a8675a0c51ef3202p+5, 0x1.75782c4f83614164p+6, 0x1.7a2f3d90948f1666p+6, 378 0x1.5cd116ee4c088c3ap+5, 0x1.1361e3eb6e3cc20ap+2 379 ]; 380 381 static immutable real[] Q1 = [ 0x1.3a4ce1406cea98fap-13, 0x1.f45332623335cda2p-7, 382 0x1.98f28bbd4b98db1p-2, 0x1.ec3b24f9c698091cp+1, 0x1.1cc56ecda7cf58e4p+4, 383 0x1.92c6f7376bf8c058p+5, 0x1.4154c25aa47519b4p+6, 0x1.1b321d3b927849eap+6, 384 0x1.403a5f5a4ce7b202p+4, 1.0 385 ]; 386 387 static immutable real[] P2 = [ 0x1.8c124a850116a6d8p-21, 0x1.534abda3c2fb90bap-13, 388 0x1.29a055ec93a4718cp-7, 0x1.6468e98aad6dd474p-3, 0x1.3dab2ef4c67a601cp+0, 389 0x1.e1fb3a1e70c67464p+1, 0x1.b6cce8035ff57b02p+2, 0x1.9f4c9e749ff35f62p+1 390 ]; 391 392 static immutable real[] Q2 = [ 0x1.af03f4fc0655e006p-21, 0x1.713192048d11fb2p-13, 393 0x1.4357e5bbf5fef536p-7, 0x1.7fdac8749985d43cp-3, 0x1.4a080c813a2d8e84p+0, 394 0x1.c3a4b423cdb41bdap+1, 0x1.8160694e24b5557ap+2, 1.0 395 ]; 396 397 static immutable real[] P3 = [ -0x1.55da447ae3806168p-34, -0x1.145635641f8778a6p-24, 398 -0x1.abf46d6b48040128p-17, -0x1.7da550945da790fcp-11, -0x1.aa0b2a31157775fap-8, 399 0x1.b11d97522eed26bcp-3, 0x1.1106d22f9ae89238p+1, 0x1.029a358e1e630f64p+1 400 ]; 401 402 static immutable real[] Q3 = [ -0x1.74022dd5523e6f84p-34, -0x1.2cb60d61e29ee836p-24, 403 -0x1.d19e6ec03a85e556p-17, -0x1.9ea2a7b4422f6502p-11, -0x1.c54b1e852f107162p-8, 404 0x1.e05268dd3c07989ep-3, 0x1.239c6aff14afbf82p+1, 1.0 405 ]; 406 407 if(p<=0.0L || p>=1.0L) { 408 if (p == 0.0L) { 409 return -real.infinity; 410 } 411 if( p == 1.0L ) { 412 return real.infinity; 413 } 414 return NaN(TANGO_NAN.NORMALDISTRIBUTION_INV_DOMAIN); 415 } 416 int code = 1; 417 real y = p; 418 if( y > (1.0L - EXP_2) ) { 419 y = 1.0L - y; 420 code = 0; 421 } 422 423 real x, z, y2, x0, x1; 424 425 if ( y > EXP_2 ) { 426 y = y - 0.5L; 427 y2 = y * y; 428 x = y + y * (y2 * rationalPoly( y2, P0, Q0)); 429 return x * SQRT2PI; 430 } 431 432 x = sqrt( -2.0L * log(y) ); 433 x0 = x - log(x)/x; 434 z = 1.0L/x; 435 if ( x < 8.0L ) { 436 x1 = z * rationalPoly( z, P1, Q1); 437 } else if( x < 32.0L ) { 438 x1 = z * rationalPoly( z, P2, Q2); 439 } else { 440 x1 = z * rationalPoly( z, P3, Q3); 441 } 442 x = x0 - x1; 443 if ( code != 0 ) { 444 x = -x; 445 } 446 return x; 447 } 448 449 } 450 451 452 unittest { 453 // TODO: Use verified test points. 454 // The values below are from Excel 2003. 455 test(fabs(normalDistributionInvImpl(0.001) - (-3.09023230616779))< 0.00000000000005); 456 test(fabs(normalDistributionInvImpl(1e-50) - (-14.9333375347885))< 0.00000000000005); 457 test(feqrel(normalDistributionInvImpl(0.999), -normalDistributionInvImpl(0.001))>real.mant_dig-6); 458 459 // Excel 2003 gets all the following values wrong! 460 test(normalDistributionInvImpl(0.0)==-real.infinity); 461 test(normalDistributionInvImpl(1.0)==real.infinity); 462 test(normalDistributionInvImpl(0.5)==0); 463 // (Excel 2003 returns norminv(p) = -30 for all p < 1e-200). 464 // The value tested here is the one the function returned in Jan 2006. 465 real unknown1 = normalDistributionInvImpl(1e-250L); 466 test( fabs(unknown1 -(-33.79958617269L) ) < 0.00000005); 467 }