1 /*******************************************************************************
2 3 Random number generators
4 5 This is an attempt at having a good flexible and easy to use random number
6 generator.
7 ease of use:
8 $(UL
9 $(LI shared generator for quick usage available through the "rand" object
10 ---
11 int i=rand.uniformR(10); // a random number from [0;10$(RPAREN)
12 ---
13 )
14 $(LI simple Random (non threadsafe) and RandomSync (threadsafe) types to
15 create new generators (for heavy use a good idea is one Random object per thread)
16 )
17 $(LI several distributions can be requested like this
18 ---
19 rand.distributionD!(type)(paramForDistribution)
20 ---
21 the type can often be avoided if the parameters make it clear.
22 From it single numbers can be generated with .getRandom(), and variables
23 initialized either with call style (var) or with .randomize(var).
24 Utility functions to generate numbers directly are also available.
25 The choice to put all the distribution in a single object that caches them
26 has made (for example) the gamma distribution very easy to implement.
27 )
28 $(LI sample usage:
29 ---
30 auto r=new Random();
31 int i; float f; real rv; real[100] ar0; real[] ar=ar0[];
32 // initialize with uniform distribution
33 i=r.uniform!(int);
34 f=r.uniform!(float);
35 rv=r.uniform!(real);
36 foreach (ref el;ar)
37 el=r.uniform!(real);
38 // another way to do all the previous in one go:
39 r(i)(f)(rv)(ar);
40 // unfortunetely one cannot use directly ar0...
41 // uniform distribution 0..10
42 i=r.uniformR(10);
43 f=r.uniformR(10.0f);
44 rv=r.uniformR(10.0L);
45 foreach (ref el;ar)
46 el=r.uniformR(10.0L);
47 // another way to do all the previous in one go:
48 r.uniformRD(10)(i)(f)(r)(ar);
49 // uniform numbers in [5;10)
50 i=r.uniformR2(5,10);
51 // uniform numbers in (5;10)
52 f=r.uniformR2(5.0f,10.0f);
53 rv=r.uniformR2(5.0L,10.0L);
54 foreach (ref el;ar)
55 el=r.uniformR2(5.0L,10.0L);
56 // another way to do all the previous in one go:
57 r.uniformR2D(5.0L,10.0L)(i)(f)(r)(ar);
58 // uniform distribution -10..10
59 i=r.uniformRSymm(10);
60 // well you get it...
61 r.uniformRSymmD(10)(i)(f)(r)(ar);
62 // any distribution can be stored
63 auto r2=r.uniformRSymmD(10);
64 // and used later
65 r2(ar);
66 // complex distributions (normal,exp,gamma) are produced for the requested type
67 r.normalSource!(float)()(f);
68 // with sigma=2
69 r.normalD(2.0f)(f);
70 // and can be used also to initialize other types
71 r.normalSource!(float)()(r)(ar);
72 r.normalD(2.0f)(r)(ar);
73 // but this is different from
74 r.normalSource!(real)()(i)(r)(ar);
75 r.normalD(2.0L)(i)(r)(ar);
76 // as the source generates numbers of its type that then are simply cast to
77 // the type needed.
78 // Uniform distribution (as its creation for different types has no overhead)
79 // is never cast, so that (for example) bounds exclusion for floats is really
80 // guaranteed.
81 // For the other distribution using a distribution of different type than
82 // the variable should be done with care, as underflow/overflow might ensue.
83 //
84 // Some utility functions are also available
85 int i2=r.uniform!(int)();
86 int i2=r.randomize(i); // both i and i2 are initialized to the same value
87 float f2=r.normalSigma(3.0f);
88 ---
89 )
90 )
91 flexibility:
92 $(UL
93 $(LI easily swappable basic source
94 ---
95 // a random generator that uses the system provided random generator:
96 auto r=RandomG!(Urandom)();
97 ---
98 One could also build an engine that can be changed at runtime (that calls
99 a delegate for example), but this adds a little overhead, and changing
100 engine is not something done often, so this is not part of the library.
101 )
102 $(LI ziggurat generator can be easily adapted to any decreasing derivable
103 distribution, the hard parametrization (to find xLast) can be done
104 automatically
105 )
106 $(LI several distributions available "out of the box"
107 )
108 )
109 Quality:
110 $(UL
111 $(LI the default Source combines two surces that pass all statistical tests
112 (KISS+CMWC)
113 (P. L'Ecuyer and R. Simard, ACM Transactions on Mathematical Software (2007),
114 33, 4, Article 22, for KISS, see CMWC engine for the other)
115 )
116 $(LI floating point uniform generator always initializes the full mantissa, the
117 only flaw is a (*very* small) predilection of 0 as least important bit
118 (IEEE rounds to 0 in case of tie).
119 Using a method that initializes the full mantissa was shown to improve the
120 quality of subsequntly derived normal distribued numbers
121 (Thomas et al. Gaussian random number generators. Acm Comput Surv (2007)
122 vol. 39 (4) pp. 11)
123 )
124 $(LI Ziggurat method, a very fast and accurate method was used for both Normal and
125 exp distributed numbers.
126 )
127 $(LI gamma distribued numbers uses a method recently proposed by Marsaglia and
128 Tsang. The method is very fast, and should be good.
129 My (Fawzi's) feeling is that the transformation h(x)=(1+d*x)^3 might lose
130 a couple of bits of precision in some cases, but it is unclear if this
131 might become visible in (*very* extensive) tests or not.
132 )
133 the basic source can be easily be changed with something else
134 Efficiency:
135 $(LI very fast methods have been used, and some effort has been put into
136 optimizing some of them, but not all, but the interface has been choosen
137 so that close to optimal implementation can be provided through the same
138 interface.
139 )
140 $(LI Normal and Exp sources allocated only upon request: no memory waste, but
141 a (*very* small) speed hit, that can be avoided by storing the source in
142 a variable and using it (not going through the RandomG)
143 )
144 )
145 Annoyances:
146 $(UL
147 $(LI I have added two "next" methods to RandomG for backward compatibility
148 reasons, and the .instance from Random has been
149 replaced by the "rand" object. The idea behind this is that RandomG is
150 a template and rand it should be shared across all templates.
151 If the name rand is considered bad one could change it.
152 I kept .instance static method that returns rand, so this remain a dropin
153 replacement of the old random.
154 )
155 $(LI You cannot initialize a static array directly, this because randomize is
156 declared like this:
157 ---
158 U randomize(U)(ref U a) { }
159 ---
160 and a static array cannot be passed by reference. Removing the ref would
161 make arrays initialized, and scalar not, which is much worse.
162 )
163 )
164 165 Copyright:
166 Copyright (c) 2008. Fawzi Mohamed
167 Some parts copyright (c) 2009-2016 dunnhumby Germany GmbH.
168 All rights reserved.
169 170 License:
171 Tango Dual License: 3-Clause BSD License / Academic Free License v3.0.
172 See LICENSE_TANGO.txt for details.
173 174 Version: Initial release: July 2008
175 176 Authors: Fawzi Mohamed
177 178 *******************************************************************************/179 moduleocean.math.random.Random;
180 181 importocean.meta.types.Qualifiers;
182 183 importocean.math.random.engines.URandom;
184 importocean.math.random.engines.KissCmwc;
185 importocean.math.random.engines.ArraySource;
186 importocean.math.random.engines.Twister;
187 importocean.math.random.NormalSource;
188 importocean.math.random.ExpSource;
189 importocean.math.Math;
190 importocean.meta.types.Arrays/* : StripAllArrays */;
191 importocean.core.Verify;
192 193 // ----- templateFu begin --------194 /// compile time integer power195 privateUnqual!(T) ctfe_powI(T)(T_x,intp){
196 Unqual!(T) x = _x;
197 Unqual!(T) xx = cast(Unqual!(T))1;
198 if (p<0){
199 p=-p;
200 x=1/x;
201 }
202 for (inti=0;i<p;++i)
203 xx*=x;
204 returnxx;
205 }
206 // ----- templateFu end --------207 208 version=has_urandom;
209 210 /// if T is a float211 templateisFloat(T){
212 staticif(is(T==float)||is(T==double)||is(T==real)){
213 staticimmutableboolisFloat=true;
214 } else {
215 staticimmutableboolisFloat=false;
216 }
217 }
218 219 /// The default engine, a reasonably collision free, with good statistical properties220 /// not easy to invert, and with a relatively small key (but not too small)221 aliasKissCmwc_32_1DefaultEngine;
222 223 /// Class that represents a random number generator.224 /// Normally you should get random numbers either with call-like interface:225 /// auto r=new Random(); r(i)(j)(k);226 /// or with randomize227 /// r.randomize(i); r.randomize(j); r.randomize(k);228 /// if you use this you should be able to easily switch distribution later,229 /// as all distributions support this interface, and can be built on the top of RandomG230 /// auto r2=r.NormalSource!(float)(); r2(i)(j)(k);231 /// there are utility methods within random for the cases in which you do not232 /// want to build a special distribution for just a few numbers233 finalclassRandomG(SourceT=DefaultEngine)
234 {
235 // uniform random source236 SourceTsource;
237 // normal distributed sources238 NormalSource!(RandomG,float) normalFloat;
239 NormalSource!(RandomG,double) normalDouble;
240 NormalSource!(RandomG,real) normalReal;
241 // exp distributed sources242 ExpSource!(RandomG,float) expFloat;
243 ExpSource!(RandomG,double) expDouble;
244 ExpSource!(RandomG,real) expReal;
245 246 /// Creates and seeds a new generator247 this (boolrandomInit=true)
248 {
249 if (randomInit)
250 this.seed;
251 }
252 253 /// if source.canSeed seeds the generator using the shared rand generator254 /// (use urandom directly if available?)255 RandomGseed ()
256 {
257 staticif(is(typeof(SourceT.canSeed))) {
258 staticif (SourceT.canSeed)
259 source.seed(&rand.uniform!(uint));
260 }
261 returnthis;
262 }
263 /// if source.canSeed seeds the generator using the given source of uints264 RandomGseed (scopeuintdelegate() seedSource)
265 {
266 staticif(is(typeof(SourceT.canSeed))) {
267 staticif (SourceT.canSeed)
268 source.seed(seedSource);
269 }
270 returnthis;
271 }
272 273 /// compatibility with old Random, deprecate??274 uintnext(){
275 returnuniform!(uint)();
276 }
277 /// ditto278 uintnext(uintto){
279 returnuniformR!(uint)(to);
280 }
281 /// ditto282 uintnext(uintfrom,uintto){
283 returnuniformR2!(uint)(from,to);
284 }
285 /// ditto286 staticRandomG!(DefaultEngine) instance(){
287 returnrand;
288 }
289 //-------- Utility functions to quickly get a uniformly distributed random number -----------290 291 /// uniform distribution on the whole range of integer types, and on292 /// the (0;1) range for floating point types. Floating point guarantees the initialization293 /// of the full mantissa, but due to rounding effects it might have *very* small294 /// dependence due to rounding effects on the least significant bit (in case of tie 0 is favored).295 /// if boundCheck is false in the floating point case bounds might be included (but with a296 /// lower propability than other numbers)297 Tuniform(T,boolboundCheck=true)(){
298 staticif(is(T==uint)) {
299 returnsource.next;
300 } elsestaticif (is(T==int) || is(T==short) || is(T==ushort)|| is(T==char) || is(T==byte) || is(T==ubyte)){
301 unionUint2A{
302 Tt;
303 uintu;
304 }
305 Uint2Aa;
306 a.u=source.next;
307 returna.t;
308 } elsestaticif (is(T==long) || is (T==ulong)){
309 returncast(T)source.nextL;
310 } elsestaticif (is(T==bool)){
311 returncast(bool)(source.next & 1u); // check lowest bit312 } elsestaticif (is(T==float)||is(T==double)||is(T==real)){
313 staticif (T.mant_dig<30) {
314 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
315 staticimmutableTfact32=ctfe_powI(halfT,32);
316 staticimmutableuintminV=1u<<(T.mant_dig-1);
317 uintnV=source.next;
318 if (nV>=minV) {
319 Tres=nV*fact32;
320 staticif (boundCheck){
321 if (res!=cast(T)1) returnres;
322 // 1 due to rounding (<3.e-8), 0 impossible323 returnuniform!(T,boundCheck)();
324 } else {
325 returnres;
326 }
327 } else { // probability 0.00390625 for 24 bit mantissa328 Tscale=fact32;
329 while (nV==0){ // probability 2.3283064365386963e-10330 nV=source.next;
331 scale*=fact32;
332 }
333 Tres=nV*scale+source.next*scale*fact32;
334 staticif (boundCheck){
335 if (res!=cast(T)0) returnres;
336 returnuniform!(T,boundCheck)(); // 0 due to underflow (<1.e-38), 1 impossible337 } else {
338 returnres;
339 }
340 }
341 } elsestaticif (T.mant_dig<62) {
342 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
343 staticimmutableTfact64=ctfe_powI(halfT,64);
344 staticimmutableulongminV=1UL<<(T.mant_dig-1);
345 ulongnV=source.nextL;
346 if (nV>=minV) {
347 Tres=nV*fact64;
348 staticif (boundCheck){
349 if (res!=cast(T)1) returnres;
350 // 1 due to rounding (<1.e-16), 0 impossible351 returnuniform!(T,boundCheck)();
352 } else {
353 returnres;
354 }
355 } else { // probability 0.00048828125 for 53 bit mantissa356 staticimmutableTfact32=ctfe_powI(halfT,32);
357 staticimmutableulongminV2=1UL<<(T.mant_dig-33);
358 if (nV>=minV2){
359 return ((cast(T)nV)+(cast(T)source.next)*fact32)*fact64;
360 } else { // probability 1.1368683772161603e-13 for 53 bit mantissa361 Tscale=fact64;
362 while (nV==0){
363 nV=source.nextL;
364 scale*=fact64;
365 }
366 Tres=scale*((cast(T)nV)+(cast(T)source.nextL)*fact64);
367 staticif (boundCheck){
368 if (res!=cast(T)0) returnres;
369 // 0 due to underflow (<1.e-307)370 returnuniform!(T,boundCheck)();
371 } else {
372 returnres;
373 }
374 }
375 }
376 } elsestaticif (T.mant_dig<=64){
377 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
378 staticimmutableTfact8=ctfe_powI(halfT,8);
379 staticimmutableTfact72=ctfe_powI(halfT,72);
380 ubytenB=source.nextB;
381 if (nB!=0){
382 Tres=nB*fact8+source.nextL*fact72;
383 staticif (boundCheck){
384 if (res!=cast(T)1) returnres;
385 // 1 due to rounding (<1.e-16), 0 impossible386 returnuniform!(T,boundCheck)();
387 } else {
388 returnres;
389 }
390 } else { // probability 0.00390625391 staticimmutableTfact64=ctfe_powI(halfT,64);
392 Tscale=fact8;
393 while (nB==0){
394 nB=source.nextB;
395 scale*=fact8;
396 }
397 Tres=((cast(T)nB)+(cast(T)source.nextL)*fact64)*scale;
398 staticif (boundCheck){
399 if (res!=cast(T)0) returnres;
400 // 0 due to underflow (<1.e-4932), 1 impossible401 returnuniform!(T,boundCheck)();
402 } else {
403 returnres;
404 }
405 }
406 } else {
407 // (T.mant_dig > 64 bits), not so optimized, but works for any size408 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
409 staticimmutableTfact32=ctfe_powI(halfT,32);
410 uintnL=source.next;
411 Tfact=fact32;
412 while (nL==0){
413 fact*=fact32;
414 nL=source.next;
415 }
416 Tres=nL*fact;
417 for (intrBits=T.mant_dig-1;rBits>0;rBits-=32) {
418 fact*=fact32;
419 res+=source.next()*fact;
420 }
421 staticif (boundCheck){
422 if (res!=cast(T)0 && res !=cast(T)1) returnres;
423 returnuniform!(T,boundCheck)(); // really unlikely...424 } else {
425 returnres;
426 }
427 }
428 } elsestaticif (is(T==cfloat)||is(T==cdouble)||is(T==creal)){
429 // TODO: Remove in v7.0.0430 returncast(T)(uniform!(realType!(T))()+1i*uniform!(realType!(T))());
431 } elsestaticif (is(T==ifloat)||is(T==idouble)||is(T==ireal)){
432 // TODO: Remove in v7.0.0433 returncast(T)(1i*uniform!(realType!(T))());
434 } elsestaticassert(0,T.stringof~" unsupported type for uniform distribution");
435 }
436 437 /// uniform distribution on the range [0;to$(RPAREN) for integer types, and on438 /// the (0;to) range for floating point types. Same caveat as uniform(T) apply439 TuniformR(T,boolboundCheck=true)(Tto)
440 {
441 verify(to>0,"empty range");
442 staticif (is(T==uint) || is(T==int) || is(T==short) || is(T==ushort)
443 || is(T==char) || is(T==byte) || is(T==ubyte))
444 {
445 uintd=uint.max/cast(uint)to,dTo=to*d;
446 uintnV=source.next;
447 if (nV>=dTo){
448 for (inti=0;i<1000;++i) {
449 nV=source.next;
450 if (nV<dTo) break;
451 }
452 verify(nV<dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
453 }
454 returncast(T)(nV%to);
455 } elsestaticif (is(T==ulong) || is(T==long)){
456 ulongd=ulong.max/cast(ulong)to,dTo=to*d;
457 ulongnV=source.nextL;
458 if (nV>=dTo){
459 for (inti=0;i<1000;++i) {
460 nV=source.nextL;
461 if (nV<dTo) break;
462 }
463 verify(nV<dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
464 }
465 returncast(T)(nV%to);
466 } elsestaticif (is(T==float)|| is(T==double)||is(T==real)){
467 Tres=uniform!(T,false)*to;
468 staticif (boundCheck){
469 if (res!=cast(T)0 && res!=to) returnres;
470 returnuniformR(to);
471 } else {
472 returnres;
473 }
474 } elsestaticassert(0,T.stringof~" unsupported type for uniformR distribution");
475 }
476 /// uniform distribution on the range (-to;to) for integer types, and on477 /// the (-to;0)(0;to) range for floating point types if boundCheck is true.478 /// If boundCheck=false the range changes to [-to;0$(RPAREN)u$(LPAREN)0;to] with a slightly479 /// lower propability at the bounds for floating point numbers.480 /// excludeZero controls if 0 is excluded or not (by default float exclude it,481 /// ints no). Please note that the probability of 0 in floats is very small due482 // to the high density of floats close to 0.483 /// Cannot be used on unsigned types.484 ///485 /// In here there is probably one of the few cases where c handling of modulo of negative486 /// numbers is handy487 TuniformRSymm(T,boolboundCheck=true, boolexcludeZero=isFloat!(T))(Tto,intiter=2000)
488 {
489 verify(to>0,"empty range");
490 staticif (is(T==int)|| is(T==short) || is(T==byte)){
491 intd=int.max/to,dTo=to*d;
492 intnV=cast(int)source.next;
493 staticif (excludeZero){
494 intisIn=nV<dTo&&nV>-dTo&&nV!=0;
495 } else {
496 intisIn=nV<dTo&&nV>-dTo;
497 }
498 if (isIn){
499 returncast(T)(nV%to);
500 } else {
501 for (inti=0;i<1000;++i) {
502 nV=cast(int)source.next;
503 if (nV<dTo && nV>-dTo) break;
504 }
505 verify(nV<dTo && nV>-dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
506 returncast(T)(nV%to);
507 }
508 } elsestaticif (is(T==long)){
509 longd=long.max/to,dTo=to*d;
510 longnV=cast(long)source.nextL;
511 staticif (excludeZero){
512 intisIn=nV<dTo&&nV>-dTo&&nV!=0;
513 } else {
514 intisIn=nV<dTo&&nV>-dTo;
515 }
516 if (isIn){
517 returnnV%to;
518 } else {
519 for (inti=0;i<1000;++i) {
520 nV=source.nextL;
521 if (nV<dTo && nV>-dTo) break;
522 }
523 verify(nV<dTo && nV>-dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
524 returnnV%to;
525 }
526 } elsestaticif (is(T==float)||is(T==double)||is(T==real)){
527 staticif (T.mant_dig<30){
528 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
529 staticimmutableTfact32=ctfe_powI(halfT,32);
530 staticimmutableuintminV=1u<<T.mant_dig;
531 uintnV=source.next;
532 if (nV>=minV) {
533 Tres=nV*fact32*to;
534 staticif (boundCheck){
535 if (res!=to) return (1-2*cast(int)(nV&1u))*res;
536 // to due to rounding (~3.e-8), 0 impossible with normal to values537 verify(iter>0,"error with the generator, probability < 10^(-8*2000)");
538 returnuniformRSymm(to,iter-1);
539 } else {
540 return (1-2*cast(int)(nV&1u))*res;
541 }
542 } else { // probability 0.008 for 24 bit mantissa543 Tscale=fact32;
544 while (nV==0){ // probability 2.3283064365386963e-10545 nV=source.next;
546 scale*=fact32;
547 }
548 uintnV2=source.next;
549 Tres=(cast(T)nV+cast(T)nV2*fact32)*scale*to;
550 staticif (excludeZero){
551 if (res!=cast(T)0) return (1-2*cast(int)(nV&1u))*res;
552 verify(iter>0,"error with the generator, probability < 10^(-8*2000)");
553 returnuniformRSymm(to,iter-1); // 0 due to underflow (<1.e-38), 1 impossible554 } else {
555 return (1-2*cast(int)(nV&1u))*res;
556 }
557 }
558 } elsestaticif (T.mant_dig<62) {
559 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
560 staticimmutableTfact64=ctfe_powI(halfT,64);
561 staticimmutableulongminV=1UL<<(T.mant_dig);
562 ulongnV=source.nextL;
563 if (nV>=minV) {
564 Tres=nV*fact64*to;
565 staticif (boundCheck){
566 if (res!=to) return (1-2*cast(int)(nV&1UL))*res;
567 // to due to rounding (<1.e-16), 0 impossible with normal to values568 verify(iter>0,"error with the generator, probability < 10^(-16*2000)");
569 returnuniformRSymm(to,iter-1);
570 } else {
571 return (1-2*cast(int)(nV&1UL))*res;
572 }
573 } else { // probability 0.00048828125 for 53 bit mantissa574 staticimmutableTfact32=ctfe_powI(halfT,32);
575 staticimmutableulongminV2=1UL<<(T.mant_dig-32);
576 if (nV>=minV2){
577 uintnV2=source.next;
578 Tres=((cast(T)nV)+(cast(T)nV2)*fact32)*fact64*to;
579 return (1-2*cast(int)(nV2&1UL))*res; // cannot be 0 or to with normal to values580 } else { // probability 1.1368683772161603e-13 for 53 bit mantissa581 Tscale=fact64;
582 while (nV==0){
583 nV=source.nextL;
584 scale*=fact64;
585 }
586 ulongnV2=source.nextL;
587 Tres=to*scale*((cast(T)nV)+(cast(T)nV2)*fact64);
588 staticif (excludeZero){
589 if (res!=cast(T)0) return (1-2*cast(int)(nV2&1UL))*res;
590 // 0 due to underflow (<1.e-307)591 verify(iter>0,"error with the generator, probability < 10^(-16*2000)");
592 returnuniformRSymm(to,iter-1);
593 } else {
594 return (1-2*cast(int)(nV2&1UL))*res;
595 }
596 }
597 }
598 } elsestaticif (T.mant_dig<=64) {
599 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
600 staticimmutableTfact8=ctfe_powI(halfT,8);
601 staticimmutableTfact72=ctfe_powI(halfT,72);
602 ubytenB=source.nextB;
603 if (nB!=0){
604 ulongnL=source.nextL;
605 Tres=to*(nB*fact8+nL*fact72);
606 staticif (boundCheck){
607 if (res!=to) return (1-2*cast(int)(nL&1UL))*res;
608 // 1 due to rounding (<1.e-16), 0 impossible with normal to values609 verify(iter>0,"error with the generator, probability < 10^(-16*2000)");
610 returnuniformRSymm(to,iter-1);
611 } else {
612 return (1-2*cast(int)(nL&1UL))*res;
613 }
614 } else { // probability 0.00390625615 staticimmutableTfact64=ctfe_powI(halfT,64);
616 Tscale=fact8;
617 while (nB==0){
618 nB=source.nextB;
619 scale*=fact8;
620 }
621 ulongnL=source.nextL;
622 Tres=((cast(T)nB)+(cast(T)nL)*fact64)*scale*to;
623 staticif (excludeZero){
624 if (res!=cast(T)0) return ((nL&1UL)?res:-res);
625 // 0 due to underflow (<1.e-4932), 1 impossible626 verify(iter>0,"error with the generator, probability < 10^(-16*2000)");
627 returnuniformRSymm(to,iter-1);
628 } else {
629 return ((nL&1UL)?res:-res);
630 }
631 }
632 } else {
633 // (T.mant_dig > 64 bits), not so optimized, but works for any size634 staticimmutableThalfT=(cast(T)1)/(cast(T)2);
635 staticimmutableTfact32=ctfe_powI(halfT,32);
636 uintnL=source.next;
637 Tfact=fact32;
638 while (nL==0){
639 fact*=fact32;
640 nL=source.next;
641 }
642 Tres=nL*fact;
643 for (intrBits=T.mant_dig;rBits>0;rBits-=32) {
644 fact*=fact32;
645 nL=source.next();
646 res+=nL*fact;
647 }
648 staticif (boundCheck){
649 if (res!=to && res!=cast(T)0) return ((nL&1UL)?res:-res);
650 // 1 due to rounding (<1.e-16), 0 impossible with normal to values651 verify(iter>0,"error with the generator, probability < 10^(-16*2000)");
652 returnuniformRSymm(to,iter-1);
653 } else {
654 return ((nL&1UL)?res:-res);
655 }
656 }
657 } elsestaticassert(0,T.stringof~" unsupported type for uniformRSymm distribution");
658 }
659 /// uniform distribution [from;to$(RPAREN) for integers, and (from;) for floating point numbers.660 /// if boundCheck is false the bounds are included in the floating point number distribution.661 /// the range for int and long is limited to only half the possible range662 /// (it could be worked around using long aritmethic for int, and doing a carry by hand for long,663 /// but I think it is seldomly needed, for int you are better off using long when needed)664 TuniformR2(T,boolboundCheck=true)(Tfrom,Tto)
665 {
666 verify(to>from,"empy range in uniformR2");
667 staticif (is(T==int) || is(T==long)){
668 verify(from>T.min/2&&to<T.max/2," from..to range too big");
669 }
670 staticif (is(T==int)||is(T==long)||is(T==uint)||is(T==ulong)){
671 returnfrom+uniformR(to-from);
672 } elsestaticif (is(T==char) || is(T==byte) || is(T==ubyte) || is(T==short) || is(T==ushort)){
673 intd=cast(int)to-cast(int)from;
674 intnV=uniformR!(int)(d);
675 returncast(T)(nV+cast(int)from);
676 } elsestaticif (is(T==float) || is(T==double) || is(T==real)){
677 Tres=from+(to-from)*uniform!(T,false);
678 staticif (boundCheck){
679 if (res!=from && res!=to) returnres;
680 returnuniformR2(from,to);
681 } else {
682 returnres;
683 }
684 } elsestaticassert(0,T.stringof~" unsupported type for uniformR2 distribution");
685 }
686 /// returns a random element of the given array (which must be non empty)687 TuniformEl(T)(T[] arr){
688 verify(arr.length>0,"array has to be non empty");
689 returnarr[uniformR(arr.length)];
690 }
691 692 /**************************************************************************
693 694 Randomizes the given array and returns it (for some types this is
695 potentially more efficient, both from the use of random numbers
696 and speedwise)
697 698 *************************************************************************/699 700 UrandomizeUniform(U,boolboundCheck)(refUa){
701 staticif (is(US:S[])){
702 aliasStripAllArrays!(U) T;
703 staticif (is(T==byte)||is(T==ubyte)||is(T==char)){
704 uintval=source.next; /// begin without value?705 intrest=4;
706 for (size_ti=0;i<a.length;++i) {
707 if (rest!=0){
708 a[i]=cast(T)(0xFFu&val);
709 val>>=8;
710 --rest;
711 } else {
712 val=source.next;
713 a[i]=cast(T)(0xFFu&val);
714 val>>=8;
715 rest=3;
716 }
717 }
718 } elsestaticif (is(T==uint)||is(T==int)){
719 T* aEnd=a.ptr+a.length;
720 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr)
721 *aPtr=cast(T)(source.next);
722 } elsestaticif (is(T==ulong)||is(T==long)){
723 T* aEnd=a.ptr+a.length;
724 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr)
725 *aPtr=cast(T)(source.nextL);
726 } elsestaticif (is(T==float)|| is(T==double)|| is(T==real)) {
727 // optimize more? not so easy with guaranteed full mantissa initialization728 T* aEnd=a.ptr+a.length;
729 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
730 *aPtr=uniform!(T,boundCheck)();
731 }
732 } elsestaticassert(T.stringof~" type not supported by randomizeUniform");
733 } else {
734 a=uniform!(U,boundCheck)();
735 }
736 returna;
737 }
738 739 /**************************************************************************
740 741 Randomizes the given array and returns it (for some types this is
742 potentially more efficient, both from the use of random numbers
743 and speedwise)
744 745 *************************************************************************/746 747 UrandomizeUniformR(U,V,boolboundCheck=true)(refUa,Vto)
748 {
749 verify((cast(StripAllArrays!(U))to)>0,"empty range");
750 aliasStripAllArrays!(U) T;
751 staticassert(is(V:T),"incompatible a and to type "~U.stringof~" "~V.stringof);
752 staticif (is(US:S[])){
753 staticif (is(T==uint) || is(T==int) || is(T==char) || is(T==byte) || is(T==ubyte)){
754 uintd=uint.max/cast(uint)to,dTo=(cast(uint)to)*d;
755 T* aEnd=a.ptr+a.length;
756 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
757 uintnV=source.next;
758 if (nV<dTo){
759 *aPtr=cast(T)(nV % cast(uint)to);
760 } else {
761 for (inti=0;i<1000;++i) {
762 nV=source.next;
763 if (nV<dTo) break;
764 }
765 verify(nV<dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
766 *aPtr=cast(T)(nV % cast(uint)to);
767 }
768 }
769 } elsestaticif (is(T==ulong) || is(T==long)){
770 ulongd=ulong.max/cast(ulong)to,dTo=(cast(ulong)to)*d;
771 T* aEnd=a.ptr+a.length;
772 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
773 ulongnV=source.nextL;
774 if (nV<dTo){
775 el=cast(T)(nV % cast(ulong)to);
776 } else {
777 for (inti=0;i<1000;++i) {
778 nV=source.nextL;
779 if (nV<dTo) break;
780 }
781 verify(nV<dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
782 el=cast(T)(nV% cast(ulong)to);
783 }
784 }
785 } elsestaticif (is(T==float) || is(T==double) || is(T==real)){
786 T* aEnd=a.ptr+a.length;
787 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
788 *aPtr=uniformR!(T,boundCheck)(cast(T)to);
789 }
790 } elsestaticassert(0,T.stringof~" unsupported type for uniformR distribution");
791 } else {
792 a=uniformR!(T,boundCheck)(cast(T)to);
793 }
794 returna;
795 }
796 797 /**************************************************************************
798 799 Randomizes the given array and returns it (for some types this is
800 potentially more efficient, both from the use of random numbers
801 and speedwise)
802 803 *************************************************************************/804 805 UrandomizeUniformR2(U,V,W,boolboundCheck=true)(refUa,Vfrom, Wto)
806 {
807 aliasStripAllArrays!(U) T;
808 verify((cast(T)to)>(cast(T)from),"empy range in uniformR2");
809 staticif (is(T==int) || is(T==long)){
810 verify(from>T.min/2&&to<T.max/2," from..to range too big");
811 }
812 aliasStripAllArrays!(U) T;
813 staticassert(is(V:T),"incompatible a and from type "~U.stringof~" "~V.stringof);
814 staticassert(is(W:T),"incompatible a and to type "~U.stringof~" "~W.stringof);
815 staticif (is(US:S[])){
816 staticif (is(T==uint)||is(T==ulong)){
817 Td=cast(T)to-cast(T)from;
818 T* aEnd=a.ptr+a.length;
819 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
820 *aPtr=from+uniformR!(d)();
821 }
822 } elseif (is(T==char) || is(T==byte) || is(T==ubyte)){
823 intd=cast(int)to-cast(int)from;
824 T* aEnd=a.ptr+a.length;
825 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
826 *aPtr=cast(T)(uniformR!(d)+cast(int)from);
827 }
828 } elsestaticif (is(T==float) || is(T==double) || is(T==real)){
829 T* aEnd=a.ptr+a.length;
830 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
831 Tres=cast(T)from+(cast(T)to-cast(T)from)*uniform!(T,false);
832 staticif (boundCheck){
833 if (res!=cast(T)from && res!=cast(T)to){
834 *aPtr=res;
835 } else {
836 *aPtr=uniformR2!(T,boundCheck)(cast(T)from,cast(T)to);
837 }
838 } else {
839 *aPtr=res;
840 }
841 }
842 } elsestaticassert(0,T.stringof~" unsupported type for uniformR2 distribution");
843 } else {
844 a=uniformR2!(T,boundCheck)(from,to);
845 }
846 returna;
847 }
848 /// randomizes the given variable like uniformRSymm and returns it849 /// (for some types this is potentially more efficient, both from the use of850 /// random numbers and speedwise)851 UrandomizeUniformRSymm(U,V,boolboundCheck=true, bool852 excludeZero=isFloat!(StripAllArrays!(U)))
853 (refUa,Vto)
854 {
855 aliasStripAllArrays!(U) T;
856 verify((cast(T)to)>0,"empty range");
857 staticassert(is(V:T),"incompatible a and to type "~U.stringof~" "~V.stringof);
858 staticif (is(US:S[])){
859 staticif (is(T==int)|| is(T==byte)){
860 intd=int.max/cast(int)to,dTo=(cast(int)to)*d;
861 T* aEnd=a.ptr+a.length;
862 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
863 intnV=cast(int)source.next;
864 staticif (excludeZero){
865 intisIn=nV<dTo&&nV>-dTo&&nV!=0;
866 } else {
867 intisIn=nV<dTo&&nV>-dTo;
868 }
869 if (isIn){
870 *aPtr=cast(T)(nV% cast(int)to);
871 } else {
872 for (inti=0;i<1000;++i) {
873 nV=cast(int)source.next;
874 if (nV<dTo&&nV>-dTo) break;
875 }
876 verify(nV<dTo && nV>-dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
877 *aPtr=cast(T)(nV% cast(int)to);
878 }
879 }
880 } elsestaticif (is(T==long)){
881 longd=long.max/cast(T)to,dTo=(cast(T)to)*d;
882 longnV=cast(long)source.nextL;
883 T* aEnd=a.ptr+a.length;
884 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
885 staticif (excludeZero){
886 intisIn=nV<dTo&&nV>-dTo&&nV!=0;
887 } else {
888 intisIn=nV<dTo&&nV>-dTo;
889 }
890 if (isIn){
891 *aPtr=nV% cast(T)to;
892 } else {
893 for (inti=0;i<1000;++i) {
894 nV=source.nextL;
895 if (nV<dTo && nV>-dTo) break;
896 }
897 verify(nV<dTo && nV>-dTo,"this is less probable than 1.e-301, something is wrong with the random number generator");
898 *aPtr=nV% cast(T)to;
899 }
900 }
901 } elsestaticif (is(T==float)||is(T==double)||is(T==real)){
902 T* aEnd=a.ptr+a.length;
903 for (T* aPtr=a.ptr;aPtr!=aEnd;++aPtr){
904 *aPtr=uniformRSymm!(T,boundCheck,excludeZero)(cast(T)to);
905 }
906 } elsestaticassert(0,T.stringof~" unsupported type for uniformRSymm distribution");
907 } else {
908 a=uniformRSymm!(T,boundCheck,excludeZero)(cast(T)to);
909 }
910 returna;
911 }
912 913 /// returns another (mostly indipendent, depending on seed size) random generator914 RandGspawn(RandG=RandomG)(){
915 RandGres=newRandG(false);
916 res.seed(&uniform!(uint));
917 returnres;
918 }
919 920 // ------- structs for uniform distributions -----921 /// uniform distribution on the whole range for integers, and on (0;1) for floats922 /// with boundCheck=true this is equivalent to r itself, here just for completness923 structUniformDistribution(T,boolboundCheck){
924 RandomGr;
925 staticUniformDistributioncreate(RandomGr){
926 UniformDistributionres;
927 res.r=r;
928 returnres;
929 }
930 /// chainable call style initialization of variables (thorugh a call to randomize)931 UniformDistributionopCall(U,S...)(refUa,Sargs){
932 randomize(a,args);
933 returnthis;
934 }
935 /// returns a random number936 TgetRandom(){
937 returnr.uniform!(T,boundCheck)();
938 }
939 /// initialize el940 Urandomize(U)(refUa){
941 returnr.randomizeUniform!(U,boundCheck)(a);
942 }
943 }
944 945 /// uniform distribution on the subrange [0;to$(RPAREN) for integers, (0;to) for floats946 structUniformRDistribution(T,boolboundCheck){
947 Tto;
948 RandomGr;
949 /// initializes the probability distribution950 staticUniformRDistributioncreate(RandomGr,Tto){
951 UniformRDistributionres;
952 res.r=r;
953 res.to=to;
954 returnres;
955 }
956 /// chainable call style initialization of variables (thorugh a call to randomize)957 UniformRDistributionopCall(U)(refUa){
958 randomize(a);
959 returnthis;
960 }
961 /// returns a random number962 TgetRandom(){
963 returnr.uniformR!(T,boundCheck)(to);
964 }
965 /// initialize el966 Urandomize(U)(refUa){
967 returnr.randomizeUniformR!(U,T,boundCheck)(a,to);
968 }
969 }
970 971 /// uniform distribution on the subrange (-to;to) for integers, (-to;0)u(0;to) for floats972 /// excludeZero controls if the zero should be excluded, boundCheck if the boundary should973 /// be excluded for floats974 structUniformRSymmDistribution(T,boolboundCheck=true,boolexcludeZero=isFloat!(T)){
975 Tto;
976 RandomGr;
977 /// initializes the probability distribution978 staticUniformRSymmDistributioncreate(RandomGr,Tto){
979 UniformRSymmDistributionres;
980 res.r=r;
981 res.to=to;
982 returnres;
983 }
984 /// chainable call style initialization of variables (thorugh a call to randomize)985 UniformRSymmDistributionopCall(U)(refUa){
986 randomize(a);
987 returnthis;
988 }
989 /// returns a random number990 TgetRandom(){
991 returnr.uniformRSymm!(T,boundCheck,excludeZero)(to);
992 }
993 /// initialize el994 Urandomize(U)(refUa){
995 returnr.randomizeUniformRSymm!(U,T,boundCheck)(a,to);
996 }
997 }
998 999 /// uniform distribution on the subrange (-to;to) for integers, (0;to) for floats1000 structUniformR2Distribution(T,boolboundCheck){
1001 Tfrom,to;
1002 RandomGr;
1003 /// initializes the probability distribution1004 staticUniformR2Distributioncreate(RandomGr,Tfrom, Tto){
1005 UniformR2Distributionres;
1006 res.r=r;
1007 res.from=from;
1008 res.to=to;
1009 returnres;
1010 }
1011 /// chainable call style initialization of variables (thorugh a call to randomize)1012 UniformR2DistributionopCall(U,S...)(refUa,Sargs){
1013 randomize(a,args);
1014 returnthis;
1015 }
1016 /// returns a random number1017 TgetRandom(){
1018 returnr.uniformR2!(T,boundCheck)(from,to);
1019 }
1020 /// initialize a1021 Urandomize(U)(refUa){
1022 returnr.randomizeUniformR2!(U,T,T,boundCheck)(a,from,to);
1023 }
1024 }
1025 1026 // ---------- gamma distribution, move to a separate module? --------1027 /// gamma distribution f=x^(alpha-1)*exp(-x/theta)/(gamma(alpha)*theta^alpha)1028 /// alpha has to be bigger than 1, for alpha<1 use gammaD(alpha)=gammaD(alpha+1)*pow(r.uniform!(T),1/alpha)1029 /// from Marsaglia and Tsang, ACM Transaction on Mathematical Software, Vol. 26, N. 31030 /// 2000, p 363-3721031 structGammaDistribution(T){
1032 RandomGr;
1033 Talpha;
1034 Ttheta;
1035 staticGammaDistributioncreate(RandomGr,Talpha=cast(T)1,Ttheta=cast(T)1){
1036 GammaDistributionres;
1037 res.r=r;
1038 res.alpha=alpha;
1039 res.theta=theta;
1040 verify(alpha>=cast(T)1,"implemented only for alpha>=1");
1041 returnres;
1042 }
1043 /// chainable call style initialization of variables (thorugh a call to randomize)1044 GammaDistributionopCall(U,S...)(refUa,Sargs){
1045 randomize(a,args);
1046 returnthis;
1047 }
1048 /// returns a single random number1049 TgetRandom(Ta=alpha,Tt=theta)
1050 {
1051 verify(a>=cast(T)1,"implemented only for alpha>=1");
1052 Td=a-(cast(T)1)/(cast(T)3);
1053 Tc=(cast(T)1)/sqrt(d*cast(T)9);
1054 auton=r.normalSource!(T)();
1055 for (;;) {
1056 do {
1057 Tx=n.getRandom();
1058 Tv=c*x+cast(T)1;
1059 v=v*v*v; // might underflow (in extreme situations) so it is in the loop1060 } while (v<=0);
1061 Tu=r.uniform!(T)();
1062 if (u<1-(cast(T)0.331)*(x*x)*(x*x)) returnt*d*v;
1063 if (log(u)< x*x/2+d*(1-v+log(v))) returnt*d*v;
1064 }
1065 }
1066 /// initializes b with gamma distribued random numbers1067 Urandomize(U)(refUb,Ta=alpha,Tt=theta){
1068 staticif (is(US:S[])) {
1069 aliasStripAllArrays!(U) T;
1070 T* bEnd=b.ptr+b.length;
1071 for (T* bPtr=b.ptr;bPtr!=bEnd;++bPtr){
1072 *bPtr=cast(StripAllArrays!(U)) getRandom(a,t);
1073 }
1074 } else {
1075 b=cast(U) getRandom(a,t);
1076 }
1077 returnb;
1078 }
1079 /// maps op on random numbers (of type T) and initializes b with it1080 UrandomizeOp(U,S)(scopeSdelegate(T)op, refUb,Ta=alpha, Tt=theta){
1081 staticif(is(US:S[])){
1082 aliasStripAllArrays!(U) T;
1083 T* bEnd=b.ptr+b.length;
1084 for (T* bPtr=b.ptr;bPtr!=bEnd;++bPtr){
1085 *bPtr=cast(StripAllArrays!(U))op(getRandom(a,t));
1086 }
1087 } else {
1088 b=cast(U)op(getRandom(a));
1089 }
1090 returnb;
1091 }
1092 }
1093 1094 //-------- various distributions available -----------1095 1096 /// generators of normal numbers (sigma=1,mu=0) of the given type1097 /// f=exp(-x*x/(2*sigma^2))/(sqrt(2 pi)*sigma)1098 NormalSource!(RandomG,T) normalSource(T)(){
1099 staticif(is(T==float)){
1100 if (!normalFloat) normalFloat=newNormalSource!(RandomG,T)(this);
1101 returnnormalFloat;
1102 } elsestaticif (is(T==double)){
1103 if (!normalDouble) normalDouble=newNormalSource!(RandomG,T)(this);
1104 returnnormalDouble;
1105 } elsestaticif (is(T==real)){
1106 if (!normalReal) normalReal=newNormalSource!(RandomG,T)(this);
1107 returnnormalReal;
1108 } elsestaticassert(0,T.stringof~" no normal source implemented");
1109 }
1110 1111 /// generators of exp distribued numbers (beta=1) of the given type1112 /// f=1/beta*exp(-x/beta)1113 ExpSource!(RandomG,T) expSource(T)(){
1114 staticif(is(T==float)){
1115 if (!expFloat) expFloat=newExpSource!(RandomG,T)(this);
1116 returnexpFloat;
1117 } elsestaticif (is(T==double)){
1118 if (!expDouble) expDouble=newExpSource!(RandomG,T)(this);
1119 returnexpDouble;
1120 } elsestaticif (is(T==real)){
1121 if (!expReal) expReal=newExpSource!(RandomG,T)(this);
1122 returnexpReal;
1123 } elsestaticassert(0,T.stringof~" no exp source implemented");
1124 }
1125 1126 /// generators of normal numbers with a different default sigma/mu1127 /// f=exp(-x*x/(2*sigma^2))/(sqrt(2 pi)*sigma)1128 NormalSource!(RandomG,T).NormalDistributionnormalD(T)(Tsigma=cast(T)1,Tmu=cast(T)0){
1129 returnnormalSource!(T).normalD(sigma,mu);
1130 }
1131 /// exponential distribued numbers with a different default beta1132 /// f=1/beta*exp(-x/beta)1133 ExpSource!(RandomG,T).ExpDistributionexpD(T)(Tbeta){
1134 returnexpSource!(T).expD(beta);
1135 }
1136 /// gamma distribued numbers with the given default alpha1137 GammaDistribution!(T) gammaD(T)(Talpha=cast(T)1,Ttheta=cast(T)1){
1138 returnGammaDistribution!(T).create(this,alpha,theta);
1139 }
1140 1141 /// uniform distribution on the whole integer range, and on (0;1) for floats1142 /// should return simply this??1143 UniformDistribution!(T,true) uniformD(T)(){
1144 returnUniformDistribution!(T,true).create(this);
1145 }
1146 /// uniform distribution on the whole integer range, and on [0;1] for floats1147 UniformDistribution!(T,false) uniformBoundsD(T)(){
1148 returnUniformDistribution!(T,false).create(this);
1149 }
1150 /// uniform distribution [0;to$(RPAREN) for ints, (0:to) for reals1151 UniformRDistribution!(T,true) uniformRD(T)(Tto){
1152 returnUniformRDistribution!(T,true).create(this,to);
1153 }
1154 /// uniform distribution [0;to$(RPAREN) for ints, [0:to] for reals1155 UniformRDistribution!(T,false) uniformRBoundsD(T)(Tto){
1156 returnUniformRDistribution!(T,false).create(this,to);
1157 }
1158 /// uniform distribution (-to;to) for ints and (-to;0)u(0;to) for reals1159 UniformRSymmDistribution!(T,true,isFloat!(T)) uniformRSymmD(T)(Tto){
1160 returnUniformRSymmDistribution!(T,true,isFloat!(T)).create(this,to);
1161 }
1162 /// uniform distribution (-to;to) for ints and [-to;0$(RPAREN)u$(LPAREN)0;to] for reals1163 UniformRSymmDistribution!(T,false,isFloat!(T)) uniformRSymmBoundsD(T)(Tto){
1164 returnUniformRSymmDistribution!(T,false,isFloat!(T)).create(this,to);
1165 }
1166 /// uniform distribution [from;to$(RPAREN) for ints and (from;to) for reals1167 UniformR2Distribution!(T,true) uniformR2D(T)(Tfrom, Tto){
1168 returnUniformR2Distribution!(T,true).create(this,from,to);
1169 }
1170 /// uniform distribution [from;to$(RPAREN) for ints and [from;to] for reals1171 UniformR2Distribution!(T,false) uniformR2BoundsD(T)(Tfrom, Tto){
1172 returnUniformR2Distribution!(T,false).create(this,from,to);
1173 }
1174 1175 // -------- Utility functions for other distributions -------1176 // add also the corresponding randomize functions?1177 1178 /// returns a normal distribued number1179 Tnormal(T)(){
1180 returnnormalSource!(T).getRandom();
1181 }
1182 /// returns a normal distribued number with the given sigma1183 TnormalSigma(T)(Tsigma){
1184 returnnormalSource!(T).getRandom(sigma);
1185 }
1186 /// returns a normal distribued number with the given sigma and mu1187 TnormalSigmaMu(T)(Tsigma,Tmu){
1188 returnnormalSource!(T).getRandom(sigma,mu);
1189 }
1190 1191 /// returns an exp distribued number1192 Texp(T)(){
1193 returnexpSource!(T).getRandom();
1194 }
1195 /// returns an exp distribued number with the given scale beta1196 TexpBeta(T)(Tbeta){
1197 returnexpSource!(T).getRandom(beta);
1198 }
1199 1200 /// returns a gamma distribued number1201 /// from Marsaglia and Tsang, ACM Transaction on Mathematical Software, Vol. 26, N. 31202 /// 2000, p 363-3721203 Tgamma(T)(Talpha=cast(T)1,Tsigma=cast(T)1)
1204 {
1205 verify(alpha>=cast(T)1,"implemented only for alpha>=1");
1206 auton=normalSource!(T);
1207 Td=alpha-(cast(T)1)/(cast(T)3);
1208 Tc=(cast(T)1)/sqrt(d*cast(T)9);
1209 for (;;) {
1210 Tx,v;
1211 do {
1212 x=n.getRandom();
1213 v=c*x+cast(T)1;
1214 v=v*v*v; // might underflow (in extreme situations) so it is in the loop1215 } while (v<=0);
1216 Tu=uniform!(T)();
1217 if (u<1-(cast(T)0.331)*(x*x)*(x*x)) returnsigma*d*v;
1218 if (log(u)< x*x/2+d*(1-v+log(v))) returnsigma*d*v;
1219 }
1220 }
1221 // ---------------1222 1223 /// writes the current status in a string1224 overrideistringtoString(){
1225 returnsource.toString();
1226 }
1227 /// reads the current status from a string (that should have been trimmed)1228 /// returns the number of chars read1229 size_tfromString(cstrings){
1230 returnsource.fromString(s);
1231 }
1232 1233 // make this by default a uniformRandom number generator1234 /// chainable call style initialization of variables (thorugh a call to randomize)1235 RandomGopCall(U)(refUa){
1236 randomize(a);
1237 returnthis;
1238 }
1239 /// returns a random number1240 TgetRandom(T)(){
1241 returnuniform!(T,true)();
1242 }
1243 /// initialize el1244 Urandomize(U)(refUa){
1245 returnrandomizeUniform!(U,true)(a);
1246 }
1247 1248 } // end class RandomG1249 1250 /// make the default random number generator type1251 /// (a non threadsafe random number generator) easily available1252 /// you can safely expect a new instance of this to be indipendent from all the others1253 aliasRandomG!() Random;
1254 /// default threadsafe random number generator type1255 aliasRandomG!(DefaultEngine) RandomSync;
1256 1257 /// shared locked (threadsafe) random number generator1258 /// initialized with urandom if available, with time otherwise1259 staticRandomSyncrand;
1260 staticthis ()
1261 {
1262 rand = newRandomSync(false);
1263 1264 staticvoidset_array_source(ulongs)
1265 {
1266 uint[2] a;
1267 a[0]= cast(uint)(s & 0xFFFF_FFFFUL);
1268 a[1]= cast(uint)(s>>32);
1269 rand.seed(&(ArraySource(a).next));
1270 }
1271 1272 version (unittest){
1273 set_array_source(9); // http://dilbert.com/strip/2001-10-251274 } else {
1275 URandomr;
1276 rand.seed(&r.next);
1277 }
1278 }
1279 1280 version (unittest)
1281 {
1282 importocean.math.random.engines.KISS;
1283 importocean.math.random.engines.CMWC;
1284 importcore.stdc.stdio:printf;
1285 importocean.core.Test;
1286 1287 /// very simple statistal test, mean within maxOffset, and maximum/minimum at least minmax/maxmin1288 boolcheckMean(T)(T[] a, realmaxmin, realminmax, realexpectedMean, realmaxOffset,boolalwaysPrint=false,boolcheckB=false){
1289 TminV,maxV;
1290 realmeanV=0.0L;
1291 if (a.length>0){
1292 minV=a[0];
1293 maxV=a[0];
1294 foreach (el;a){
1295 test(!checkB || (cast(T)0<el && el<cast(T)1),"el out of bounds");
1296 if (el<minV) minV=el;
1297 if (el>maxV) maxV=el;
1298 meanV+=cast(real)el;
1299 }
1300 meanV/=cast(real)a.length;
1301 boolprintM=false;
1302 if (cast(real)minV>maxmin) printM=true;
1303 if (cast(real)maxV<minmax) printM=true;
1304 if (expectedMean-maxOffset>meanV || meanV>expectedMean+maxOffset) printM=true;
1305 if (printM){
1306 printf("WARNING ocean.math.Random statistic is strange: %.*s[%d] %Lg %Lg %Lg\n\0",
1307 cast(int)T.stringof.length, T.stringof.ptr, cast(int)a.length,
1308 cast(real)minV,meanV,cast(real)maxV);
1309 } elseif (alwaysPrint) {
1310 printf("ocean.math.Random statistic: %.*s[%d] %Lg %Lg %Lg\n\0",
1311 cast(int)T.stringof.length, T.stringof.ptr, cast(int)a.length,
1312 cast(real)minV,meanV,cast(real)maxV);
1313 }
1314 returnprintM;
1315 }
1316 returnfalse;
1317 }
1318 1319 /// check a given generator both on the whole array, and on each element separately1320 booldoTests(RandG,Arrays...)(RandGr,realmaxmin, realminmax, realexpectedMean, realmaxOffset,boolalwaysPrint,boolcheckB, Arraysarrs){
1321 boolgFail=false;
1322 foreach (i,TA;Arrays){
1323 aliasStripAllArrays!(TA) T;
1324 // all together1325 r(arrs[i]);
1326 boolfail=checkMean!(T)(arrs[i],maxmin,minmax,expectedMean,maxOffset,alwaysPrint,checkB);
1327 // one by one1328 foreach (refel;arrs[i]){
1329 r(el);
1330 }
1331 fail |= checkMean!(T)(arrs[i],maxmin,minmax,expectedMean,maxOffset,alwaysPrint,checkB);
1332 gFail |= fail;
1333 }
1334 returngFail;
1335 }
1336 1337 voidtestRandSource(RandS)(){
1338 autor=newRandomG!(RandS)();
1339 // r.fromString("KISS99_b66dda10_49340130_8f3bf553_224b7afa_00000000_00000000"); // to reproduce a given test...1340 autoinitialState=r.toString(); // so that you can reproduce things...1341 boolallStats=false; // set this to true to show all statistics (helpful to track an error)1342 try{
1343 r.uniform!(uint);
1344 r.uniform!(ubyte);
1345 r.uniform!(ulong);
1346 intcount=10_000;
1347 for (inti=count;i!=0;--i){
1348 floatf=r.uniform!(float);
1349 test(0<f && f<1,"float out of bounds");
1350 doubled=r.uniform!(double);
1351 test(0<d && d<1,"double out of bounds");
1352 realrr=r.uniform!(real);
1353 test(0<rr && rr<1,"double out of bounds");
1354 }
1355 // checkpoint status (str)1356 autostatus=r.toString();
1357 uinttVal=r.uniform!(uint);
1358 ubytet2Val=r.uniform!(ubyte);
1359 ulongt3Val=r.uniform!(ulong);
1360 1361 byte[1000] barr;
1362 ubyte[1000] ubarr;
1363 uint[1000] uiarr;
1364 int[1000] iarr;
1365 float[1000] farr;
1366 double[1000]darr;
1367 real[1000] rarr;
1368 byte[] barr2=barr[];
1369 ubyte[] ubarr2=ubarr[];
1370 uint[] uiarr2=uiarr[];
1371 int[] iarr2=iarr[];
1372 float[] farr2=farr[];
1373 double[]darr2=darr[];
1374 real[] rarr2=rarr[];
1375 1376 boolfail=false,gFail=false;
1377 fail =doTests(r,-100.0L,100.0L,0.0L,20.0L,allStats,false,barr2);
1378 fail|=doTests(r,100.0L,155.0L,127.5L,20.0L,allStats,false,ubarr2);
1379 fail|=doTests(r,0.25L*cast(real)(uint.max),0.75L*cast(real)uint.max,
1380 0.5L*uint.max,0.2L*uint.max,allStats,false,uiarr2);
1381 fail|=doTests(r,0.5L*cast(real)int.min,0.5L*cast(real)int.max,
1382 0.0L,0.2L*uint.max,allStats,false,iarr2);
1383 fail|=doTests(r,0.2L,0.8L,0.5L,0.2L,allStats,true,farr2,darr2,rarr2);
1384 gFail|=fail;
1385 1386 fail =doTests(r.uniformD!(int)(),-100.0L,100.0L,0.0L,20.0L,allStats,false,barr2);
1387 fail|=doTests(r.uniformD!(int)(),100.0L,155.0L,127.5L,20.0L,allStats,false,ubarr2);
1388 fail|=doTests(r.uniformD!(int)(),0.25L*cast(real)(uint.max),0.75L*cast(real)uint.max,
1389 0.5L*uint.max,0.2L*uint.max,allStats,false,uiarr2);
1390 fail|=doTests(r.uniformD!(real)(),0.5L*cast(real)int.min,0.5L*cast(real)int.max,
1391 0.0L,0.2L*uint.max,allStats,false,iarr2);
1392 fail|=doTests(r.uniformD!(real)(),0.2L,0.8L,0.5L,0.2L,allStats,true,farr2,darr2,rarr2);
1393 gFail|=fail;
1394 1395 fail =doTests(r.uniformBoundsD!(int)(),-100.0L,100.0L,0.0L,20.0L,allStats,false,barr2);
1396 fail|=doTests(r.uniformBoundsD!(int)(),100.0L,155.0L,127.5L,20.0L,allStats,false,ubarr2);
1397 fail|=doTests(r.uniformBoundsD!(int)(),0.25L*cast(real)(uint.max),0.75L*cast(real)uint.max,
1398 0.5L*uint.max,0.2L*uint.max,allStats,false,uiarr2);
1399 fail|=doTests(r.uniformBoundsD!(int)(),0.5L*cast(real)int.min,0.5L*cast(real)int.max,
1400 0.0L,0.2L*uint.max,allStats,false,iarr2);
1401 fail|=doTests(r.uniformBoundsD!(int)(),0.2L,0.8L,0.5L,0.2L,allStats,false,farr2,darr2,rarr2);
1402 gFail|=fail;
1403 1404 fail =doTests(r.uniformRD(cast(byte)101),25.0L,75.0L,50.0L,15.0L,allStats,false,barr2);
1405 fail|=doTests(r.uniformRD(cast(ubyte)201),50.0L,150.0L,100.0L,20.0L,allStats,false,ubarr2);
1406 fail|=doTests(r.uniformRD(1001u),250.0L,750.0L,500.0L,100.0L,allStats,false,uiarr2);
1407 fail|=doTests(r.uniformRD(1001 ),250.0L,750.0L,500.0L,100.0L,allStats,false,iarr2);
1408 fail|=doTests(r.uniformRD(1000.0L),250.0L,750.0L,500.0L,100.0L,
1409 allStats,false,farr2,darr2,rarr2);
1410 fail|=doTests(r.uniformRD(1.0L),0.2L,0.8L,0.5L,0.2L,allStats,true,farr2,darr2,rarr2);
1411 gFail|=fail;
1412 1413 fail =doTests(r.uniformRBoundsD(cast(byte)101),25.0L,75.0L,50.0L,15.0L,allStats,false,barr2);
1414 fail|=doTests(r.uniformRBoundsD(cast(ubyte)201),50.0L,150.0L,100.0L,20.0L,allStats,false,ubarr2);
1415 fail|=doTests(r.uniformRBoundsD(1001u),250.0L,750.0L,500.0L,100.0L,allStats,false,uiarr2);
1416 fail|=doTests(r.uniformRBoundsD(1001 ),250.0L,750.0L,500.0L,100.0L,allStats,false,iarr2);
1417 fail|=doTests(r.uniformRBoundsD(1000.0L),250.0L,750.0L,500.0L,100.0L,
1418 allStats,false,farr2,darr2,rarr2);
1419 gFail|=fail;
1420 1421 fail =doTests(r.uniformRSymmD!(byte)(cast(byte)100),
1422 -40.0L,40.0L,0.0L,30.0L,allStats,false,barr2);
1423 fail|=doTests(r.uniformRSymmD!(int)(1000),
1424 -300.0L,300.0L,0.0L,200.0L,allStats,false,iarr2);
1425 fail|=doTests(r.uniformRSymmD!(real)(1.0L),
1426 -0.3L,0.3L,0.0L,0.3L,allStats,false,farr2,darr2,rarr2);
1427 gFail|=fail;
1428 1429 fail =doTests(r.uniformRSymmBoundsD!(byte)(cast(byte)100),
1430 -40.0L,40.0L,0.0L,30.0L,allStats,false,barr2);
1431 fail|=doTests(r.uniformRSymmBoundsD!(int)(1000),
1432 -300.0L,300.0L,0.0L,200.0L,allStats,false,iarr2);
1433 fail|=doTests(r.uniformRSymmBoundsD!(real)(1.0L),
1434 -0.3L,0.3L,0.0L,0.3L,allStats,false,farr2,darr2,rarr2);
1435 gFail|=fail;
1436 1437 fail =doTests(r.normalSource!(float)(),-0.5L,0.5L,0.0L,1.0L,
1438 allStats,false,farr2,darr2,rarr2);
1439 fail|=doTests(r.normalSource!(double)(),-0.5L,0.5L,0.0L,1.0L,
1440 allStats,false,farr2,darr2,rarr2);
1441 fail|=doTests(r.normalSource!(real)(),-0.5L,0.5L,0.0L,1.0L,
1442 allStats,false,farr2,darr2,rarr2);
1443 fail|=doTests(r.normalD!(real)(0.5L,5.0L),4.5L,5.5L,5.0L,0.5L,
1444 allStats,false,farr2,darr2,rarr2);
1445 gFail|=fail;
1446 1447 fail =doTests(r.expSource!(float)(),0.8L,2.0L,1.0L,1.0L,
1448 allStats,false,farr2,darr2,rarr2);
1449 fail|=doTests(r.expSource!(double)(),0.8L,2.0L,1.0L,1.0L,
1450 allStats,false,farr2,darr2,rarr2);
1451 fail|=doTests(r.expSource!(real)(),0.8L,2.0L,1.0L,1.0L,
1452 allStats,false,farr2,darr2,rarr2);
1453 fail|=doTests(r.expD!(real)(5.0L),1.0L,7.0L,5.0L,1.0L,
1454 allStats,false,farr2,darr2,rarr2);
1455 gFail|=fail;
1456 1457 uintseed = 0;
1458 r.seed({ return2*(seed++); });
1459 autov1 = r.uniform!(int)();
1460 1461 seed = 0;
1462 r.seed({ return2*(seed++); });
1463 autov2 = r.uniform!(int)();
1464 1465 test!("==")(v1, v2, "Re-seed failure: " ~ RandS.stringof);
1466 1467 r.fromString(status);
1468 test!("==")(r.uniform!(uint),tVal,"restoring of status from str failed");
1469 test!("==")(r.uniform!(ubyte),t2Val,"restoring of status from str failed");
1470 test!("==")(r.uniform!(ulong),t3Val,"restoring of status from str failed");
1471 test(!gFail,"Random.d failure");
1472 } catch(Exceptione) {
1473 throwe;
1474 }
1475 }
1476 }
1477 1478 unittest {
1479 testRandSource!(Kiss99)();
1480 testRandSource!(CMWC_default)();
1481 testRandSource!(KissCmwc_default)();
1482 testRandSource!(Twister)();
1483 testRandSource!(DefaultEngine)();
1484 }