1 /**
2  * Implementation of the gamma and beta functions, and their integrals.
3  *
4  * Copyright:
5  *     Based on the CEPHES math library, which is
6  *                Copyright (C) 1994 Stephen L. Moshier (moshier@world.std.com).
7  *     Some parts copyright (c) 2009-2016 dunnhumby Germany GmbH.
8  *     All rights reserved.
9  *
10  * License:
11  *     Tango Dual License: 3-Clause BSD License / Academic Free License v3.0.
12  *     See LICENSE_TANGO.txt for details.
13  *
14  * Authors: Stephen L. Moshier (original C code). Conversion to D by Don Clugston
15  *
16  * Macros:
17  *  TABLE_SV = <table border=1 cellpadding=4 cellspacing=0>
18  *      <caption>Special Values</caption>
19  *      $0</table>
20  *  SVH = $(TR $(TH $1) $(TH $2))
21  *  SV  = $(TR $(TD $1) $(TD $2))
22  *  GAMMA =  &#915;
23  *  INTEGRATE = $(BIG &#8747;<sub>$(SMALL $1)</sub><sup>$2</sup>)
24  *  POWER = $1<sup>$2</sup>
25  *  NAN = $(RED NAN)
26  */
27 module ocean.math.GammaFunction;
28 import ocean.meta.types.Qualifiers;
29 import ocean.math.Math;
30 import ocean.math.IEEE;
31 import ocean.math.ErrorFunction;
32 import ocean.core.Verify;
33 
34 version (unittest) import ocean.core.Test;
35 
36 //------------------------------------------------------------------
37 
38 /// The maximum value of x for which gamma(x) < real.infinity.
39 static immutable real MAXGAMMA = 1755.5483429L;
40 
41 private {
42 
43 static immutable real SQRT2PI = 2.50662827463100050242E0L; // sqrt(2pi)
44 
45 // Polynomial approximations for gamma and loggamma.
46 
47 static immutable real[] GammaNumeratorCoeffs = [ 1.0,
48     0x1.acf42d903366539ep-1, 0x1.73a991c8475f1aeap-2, 0x1.c7e918751d6b2a92p-4,
49     0x1.86d162cca32cfe86p-6, 0x1.0c378e2e6eaf7cd8p-8, 0x1.dc5c66b7d05feb54p-12,
50     0x1.616457b47e448694p-15
51 ];
52 
53 static immutable real[] GammaDenominatorCoeffs = [ 1.0,
54   0x1.a8f9faae5d8fc8bp-2,  -0x1.cb7895a6756eebdep-3,  -0x1.7b9bab006d30652ap-5,
55   0x1.c671af78f312082ep-6, -0x1.a11ebbfaf96252dcp-11, -0x1.447b4d2230a77ddap-10,
56   0x1.ec1d45bb85e06696p-13,-0x1.d4ce24d05bd0a8e6p-17
57 ];
58 
59 static immutable real[] GammaSmallCoeffs = [ 1.0,
60     0x1.2788cfc6fb618f52p-1, -0x1.4fcf4026afa2f7ecp-1, -0x1.5815e8fa24d7e306p-5,
61     0x1.5512320aea2ad71ap-3, -0x1.59af0fb9d82e216p-5,  -0x1.3b4b61d3bfdf244ap-7,
62     0x1.d9358e9d9d69fd34p-8, -0x1.38fc4bcbada775d6p-10
63 ];
64 
65 static immutable real[] GammaSmallNegCoeffs = [ -1.0,
66     0x1.2788cfc6fb618f54p-1, 0x1.4fcf4026afa2bc4cp-1, -0x1.5815e8fa2468fec8p-5,
67     -0x1.5512320baedaf4b6p-3, -0x1.59af0fa283baf07ep-5, 0x1.3b4a70de31e05942p-7,
68     0x1.d9398be3bad13136p-8, 0x1.291b73ee05bcbba2p-10
69 ];
70 
71 static immutable real[] logGammaStirlingCoeffs = [
72     0x1.5555555555553f98p-4, -0x1.6c16c16c07509b1p-9, 0x1.a01a012461cbf1e4p-11,
73     -0x1.3813089d3f9d164p-11, 0x1.b911a92555a277b8p-11, -0x1.ed0a7b4206087b22p-10,
74     0x1.402523859811b308p-8
75 ];
76 
77 static immutable real[] logGammaNumerator = [
78     -0x1.0edd25913aaa40a2p+23, -0x1.31c6ce2e58842d1ep+24, -0x1.f015814039477c3p+23,
79     -0x1.74ffe40c4b184b34p+22, -0x1.0d9c6d08f9eab55p+20,  -0x1.54c6b71935f1fc88p+16,
80     -0x1.0e761b42932b2aaep+11
81 ];
82 
83 static immutable real[] logGammaDenominator = [
84     -0x1.4055572d75d08c56p+24, -0x1.deeb6013998e4d76p+24, -0x1.106f7cded5dcc79ep+24,
85     -0x1.25e17184848c66d2p+22, -0x1.301303b99a614a0ap+19, -0x1.09e76ab41ae965p+15,
86     -0x1.00f95ced9e5f54eep+9, 1.0
87 ];
88 
89 /*
90  * Helper function: Gamma function computed by Stirling's formula.
91  *
92  * Stirling's formula for the gamma function is:
93  *
94  * $(GAMMA)(x) = sqrt(2 &pi;) x<sup>x-0.5</sup> exp(-x) (1 + 1/x P(1/x))
95  *
96  */
97 real gammaStirling(real x)
98 {
99     // CEPHES code Copyright 1994 by Stephen L. Moshier
100 
101     static immutable real[] SmallStirlingCoeffs = [
102         0x1.55555555555543aap-4, 0x1.c71c71c720dd8792p-9, -0x1.5f7268f0b5907438p-9,
103         -0x1.e13cd410e0477de6p-13, 0x1.9b0f31643442616ep-11, 0x1.2527623a3472ae08p-14,
104         -0x1.37f6bc8ef8b374dep-11,-0x1.8c968886052b872ap-16, 0x1.76baa9c6d3eeddbcp-11
105     ];
106 
107     static immutable real[] LargeStirlingCoeffs = [ 1.0L,
108         8.33333333333333333333E-2L, 3.47222222222222222222E-3L,
109         -2.68132716049382716049E-3L, -2.29472093621399176955E-4L,
110         7.84039221720066627474E-4L, 6.97281375836585777429E-5L
111     ];
112 
113     real w = 1.0L/x;
114     real y = exp(x);
115     if ( x > 1024.0L ) {
116         // For large x, use rational coefficients from the analytical expansion.
117         w = poly(w, LargeStirlingCoeffs);
118         // Avoid overflow in pow()
119         real v = pow( x, 0.5L * x - 0.25L );
120         y = v * (v / y);
121     }
122     else {
123         w = 1.0L + w * poly( w, SmallStirlingCoeffs);
124         y = pow( x, x - 0.5L ) / y;
125     }
126     y = SQRT2PI * y * w;
127     return  y;
128 }
129 
130 } // private
131 
132 /****************
133  * The sign of $(GAMMA)(x).
134  *
135  * Returns -1 if $(GAMMA)(x) < 0,  +1 if $(GAMMA)(x) > 0,
136  * $(NAN) if sign is indeterminate.
137  */
138 real sgnGamma(real x)
139 {
140     /* Author: Don Clugston. */
141     if (isNaN(x)) return x;
142     if (x > 0) return 1.0;
143     if (x < -1/real.epsilon) {
144         // Large negatives lose all precision
145         return NaN(TANGO_NAN.SGNGAMMA);
146     }
147 //  if (remquo(x, -1.0, n) == 0) {
148     long n = rndlong(x);
149     if (x == n) {
150         return x == 0 ?  copysign(1, x) : NaN(TANGO_NAN.SGNGAMMA);
151     }
152     return n & 1 ? 1.0 : -1.0;
153 }
154 
155 unittest {
156     test(sgnGamma(5.0) == 1.0);
157     test(isNaN(sgnGamma(-3.0)));
158     test(sgnGamma(-0.1) == -1.0);
159     test(sgnGamma(-55.1) == 1.0);
160     test(isNaN(sgnGamma(-real.infinity)));
161     test(isIdentical(sgnGamma(NaN(0xABC)), NaN(0xABC)));
162 }
163 
164 /*****************************************************
165  *  The Gamma function, $(GAMMA)(x)
166  *
167  *  $(GAMMA)(x) is a generalisation of the factorial function
168  *  to real and complex numbers.
169  *  Like x!, $(GAMMA)(x+1) = x*$(GAMMA)(x).
170  *
171  *  Mathematically, if z.re > 0 then
172  *   $(GAMMA)(z) = $(INTEGRATE 0, &infin;) $(POWER t, z-1)$(POWER e, -t) dt
173  *
174  *  $(TABLE_SV
175  *    $(SVH  x,          $(GAMMA)(x) )
176  *    $(SV  $(NAN),      $(NAN)      )
177  *    $(SV  &plusmn;0.0, &plusmn;&infin;)
178  *    $(SV integer > 0,  (x-1)!      )
179  *    $(SV integer < 0,  $(NAN)      )
180  *    $(SV +&infin;,     +&infin;    )
181  *    $(SV -&infin;,     $(NAN)      )
182  *  )
183  */
184 real gamma(real x)
185 {
186 /* Based on code from the CEPHES library.
187  * CEPHES code Copyright 1994 by Stephen L. Moshier
188  *
189  * Arguments |x| <= 13 are reduced by recurrence and the function
190  * approximated by a rational function of degree 7/8 in the
191  * interval (2,3).  Large arguments are handled by Stirling's
192  * formula. Large negative arguments are made positive using
193  * a reflection formula.
194  */
195 
196     real q, z;
197     if (isNaN(x)) return x;
198     if (x == -x.infinity) return NaN(TANGO_NAN.GAMMA_DOMAIN);
199     if ( fabs(x) > MAXGAMMA ) return real.infinity;
200     if (x==0) return 1.0/x; // +- infinity depending on sign of x, create an exception.
201 
202     q = fabs(x);
203 
204     if ( q > 13.0L )    {
205         // Large arguments are handled by Stirling's
206         // formula. Large negative arguments are made positive using
207         // the reflection formula.
208 
209         if ( x < 0.0L ) {
210             int sgngam = 1; // sign of gamma.
211             real p  = floor(q);
212             if (p == q)
213                   return NaN(TANGO_NAN.GAMMA_DOMAIN); // poles for all integers <0.
214             int intpart = cast(int)(p);
215             if ( (intpart & 1) == 0 )
216                 sgngam = -1;
217             z = q - p;
218             if ( z > 0.5L ) {
219                 p += 1.0L;
220                 z = q - p;
221             }
222             z = q * sin( PI * z );
223             z = fabs(z) * gammaStirling(q);
224             if ( z <= PI/real.max ) return sgngam * real.infinity;
225             return sgngam * PI/z;
226         } else {
227             return gammaStirling(x);
228         }
229     }
230 
231     // Arguments |x| <= 13 are reduced by recurrence and the function
232     // approximated by a rational function of degree 7/8 in the
233     // interval (2,3).
234 
235     z = 1.0L;
236     while ( x >= 3.0L ) {
237         x -= 1.0L;
238         z *= x;
239     }
240 
241     while ( x < -0.03125L ) {
242         z /= x;
243         x += 1.0L;
244     }
245 
246     if ( x <= 0.03125L ) {
247         if ( x == 0.0L )
248             return NaN(TANGO_NAN.GAMMA_POLE);
249         else {
250             if ( x < 0.0L ) {
251                 x = -x;
252                 return z / (x * poly( x, GammaSmallNegCoeffs ));
253             } else {
254                 return z / (x * poly( x, GammaSmallCoeffs ));
255             }
256         }
257     }
258 
259     while ( x < 2.0L ) {
260         z /= x;
261         x += 1.0L;
262     }
263     if ( x == 2.0L ) return z;
264 
265     x -= 2.0L;
266     return z * poly( x, GammaNumeratorCoeffs ) / poly( x, GammaDenominatorCoeffs );
267 }
268 
269 unittest {
270     // gamma(n) = factorial(n-1) if n is an integer.
271     real fact = 1.0L;
272     for (int i=1; fact<real.max; ++i) {
273         // Require exact equality for small factorials
274         if (i<14) test(gamma(i*1.0L) == fact);
275         version(FailsOnLinux) test(feqrel(gamma(i*1.0L), fact) > real.mant_dig-15);
276         fact *= (i*1.0L);
277     }
278     test(gamma(0.0) == real.infinity);
279     test(gamma(-0.0) == -real.infinity);
280     test(isNaN(gamma(-1.0)));
281     test(isNaN(gamma(-15.0)));
282     test(isIdentical(gamma(NaN(0xABC)), NaN(0xABC)));
283     test(gamma(real.infinity) == real.infinity);
284     test(gamma(real.max) == real.infinity);
285     test(isNaN(gamma(-real.infinity)));
286     test(gamma(real.min_normal*real.epsilon) == real.infinity);
287     test(gamma(MAXGAMMA)< real.infinity);
288     test(gamma(MAXGAMMA*2) == real.infinity);
289 
290     // Test some high-precision values (50 decimal digits)
291     static immutable real SQRT_PI = 1.77245385090551602729816748334114518279754945612238L;
292 
293     version(FailsOnLinux) test(feqrel(gamma(0.5L), SQRT_PI) == real.mant_dig);
294 
295     test(feqrel(gamma(1.0/3.0L),  2.67893853470774763365569294097467764412868937795730L) >= real.mant_dig-2);
296     test(feqrel(gamma(0.25L),
297         3.62560990822190831193068515586767200299516768288006L) >= real.mant_dig-1);
298     test(feqrel(gamma(1.0/5.0L),
299         4.59084371199880305320475827592915200343410999829340L) >= real.mant_dig-1);
300 }
301 
302 /*****************************************************
303  * Natural logarithm of gamma function.
304  *
305  * Returns the base e (2.718...) logarithm of the absolute
306  * value of the gamma function of the argument.
307  *
308  * For reals, logGamma is equivalent to log(fabs(gamma(x))).
309  *
310  *  $(TABLE_SV
311  *    $(SVH  x,             logGamma(x)   )
312  *    $(SV  $(NAN),         $(NAN)      )
313  *    $(SV integer <= 0,    +&infin;    )
314  *    $(SV &plusmn;&infin;, +&infin;    )
315  *  )
316  */
317 real logGamma(real x)
318 {
319     /* Based on code from the CEPHES library.
320      * CEPHES code Copyright 1994 by Stephen L. Moshier
321      *
322      * For arguments greater than 33, the logarithm of the gamma
323      * function is approximated by the logarithmic version of
324      * Stirling's formula using a polynomial approximation of
325      * degree 4. Arguments between -33 and +33 are reduced by
326      * recurrence to the interval [2,3] of a rational approximation.
327      * The cosecant reflection formula is employed for arguments
328      * less than -33.
329      */
330     real q, w, z, f, nx;
331 
332     if (isNaN(x)) return x;
333     if (fabs(x) == x.infinity) return x.infinity;
334 
335     if( x < -34.0L ) {
336         q = -x;
337         w = logGamma(q);
338         real p = floor(q);
339         if ( p == q ) return real.infinity;
340         int intpart = cast(int)(p);
341         real sgngam = 1;
342         if ( (intpart & 1) == 0 )
343             sgngam = -1;
344         z = q - p;
345         if ( z > 0.5L ) {
346             p += 1.0L;
347             z = p - q;
348         }
349         z = q * sin( PI * z );
350         if ( z == 0.0L ) return sgngam * real.infinity;
351     /*  z = LOGPI - logl( z ) - w; */
352         z = log( PI/z ) - w;
353         return z;
354     }
355 
356     if( x < 13.0L ) {
357         z = 1.0L;
358         nx = floor( x +  0.5L );
359         f = x - nx;
360         while ( x >= 3.0L ) {
361             nx -= 1.0L;
362             x = nx + f;
363             z *= x;
364         }
365         while ( x < 2.0L ) {
366             if( fabs(x) <= 0.03125 ) {
367                     if ( x == 0.0L ) return real.infinity;
368                     if ( x < 0.0L ) {
369                         x = -x;
370                         q = z / (x * poly( x, GammaSmallNegCoeffs));
371                     } else
372                         q = z / (x * poly( x, GammaSmallCoeffs));
373                     return log( fabs(q) );
374             }
375             z /= nx +  f;
376             nx += 1.0L;
377             x = nx + f;
378         }
379         z = fabs(z);
380         if ( x == 2.0L )
381             return log(z);
382         x = (nx - 2.0L) + f;
383         real p = x * rationalPoly( x, logGammaNumerator, logGammaDenominator);
384         return log(z) + p;
385     }
386 
387     // const real MAXLGM = 1.04848146839019521116e+4928L;
388     //  if( x > MAXLGM ) return sgngaml * real.infinity;
389 
390     static immutable real LOGSQRT2PI  =  0.91893853320467274178L; // log( sqrt( 2*pi ) )
391 
392     q = ( x - 0.5L ) * log(x) - x + LOGSQRT2PI;
393     if (x > 1.0e10L) return q;
394     real p = 1.0L / (x*x);
395     q += poly( p, logGammaStirlingCoeffs ) / x;
396     return q ;
397 }
398 
399 unittest {
400     test(isIdentical(logGamma(NaN(0xDEF)), NaN(0xDEF)));
401     test(logGamma(real.infinity) == real.infinity);
402     test(logGamma(-1.0) == real.infinity);
403     test(logGamma(0.0) == real.infinity);
404     test(logGamma(-50.0) == real.infinity);
405     test(isIdentical(0.0L, logGamma(1.0L)));
406     test(isIdentical(0.0L, logGamma(2.0L)));
407     test(logGamma(real.min_normal*real.epsilon) == real.infinity);
408     test(logGamma(-real.min_normal*real.epsilon) == real.infinity);
409 
410     // x, correct loggamma(x), correct d/dx loggamma(x).
411     static real[] testpoints = [
412     8.0L,                    8.525146484375L      + 1.48766904143001655310E-5,   2.01564147795560999654E0L,
413     8.99993896484375e-1L,    6.6375732421875e-2L  + 5.11505711292524166220E-6L, -7.54938684259372234258E-1,
414     7.31597900390625e-1L,    2.2369384765625e-1   + 5.21506341809849792422E-6L, -1.13355566660398608343E0L,
415     2.31639862060546875e-1L, 1.3686676025390625L  + 1.12609441752996145670E-5L, -4.56670961813812679012E0,
416     1.73162841796875L,      -8.88214111328125e-2L + 3.36207740803753034508E-6L, 2.33339034686200586920E-1L,
417     1.23162841796875L,      -9.3902587890625e-2L  + 1.28765089229009648104E-5L, -2.49677345775751390414E-1L,
418     7.3786976294838206464e19L,   3.301798506038663053312e21L - 1.656137564136932662487046269677E5L,
419                           4.57477139169563904215E1L,
420     1.08420217248550443401E-19L, 4.36682586669921875e1L + 1.37082843669932230418E-5L,
421                          -9.22337203685477580858E18L,
422     1.0L, 0.0L, -5.77215664901532860607E-1L,
423     2.0L, 0.0L, 4.22784335098467139393E-1L,
424     -0.5L,  1.2655029296875L    + 9.19379714539648894580E-6L, 3.64899739785765205590E-2L,
425     -1.5L,  8.6004638671875e-1L + 6.28657731014510932682E-7L, 7.03156640645243187226E-1L,
426     -2.5L, -5.6243896484375E-2L + 1.79986700949327405470E-7,  1.10315664064524318723E0L,
427     -3.5L,  -1.30902099609375L  + 1.43111007079536392848E-5L, 1.38887092635952890151E0L
428     ];
429    // TODO: test derivatives as well.
430     for (int i=0; i<testpoints.length; i+=3) {
431         test( feqrel(logGamma(testpoints[i]), testpoints[i+1]) > real.mant_dig-5);
432         if (testpoints[i]<MAXGAMMA) {
433             test( feqrel(log(fabs(gamma(testpoints[i]))), testpoints[i+1]) > real.mant_dig-5);
434         }
435     }
436     test(logGamma(-50.2) == log(fabs(gamma(-50.2))));
437     test(logGamma(-0.008) == log(fabs(gamma(-0.008))));
438     test(feqrel(logGamma(-38.8),log(fabs(gamma(-38.8)))) > real.mant_dig-4);
439     test(feqrel(logGamma(1500.0L),log(gamma(1500.0L))) > real.mant_dig-2);
440 }
441 
442 private {
443     static immutable real MAXLOG = 0x1.62e42fefa39ef358p+13L;  // log(real.max)
444     static immutable real MINLOG = -0x1.6436716d5406e6d8p+13L; // log(real.min*real.epsilon) = log(smallest denormal)
445     static immutable real BETA_BIG = 9.223372036854775808e18L;
446     static immutable real BETA_BIGINV = 1.084202172485504434007e-19L;
447 }
448 
449 /** Beta function
450  *
451  * The beta function is defined as
452  *
453  * beta(x, y) = (&Gamma;(x) &Gamma;(y))/&Gamma;(x + y)
454  */
455 real beta(real x, real y)
456 {
457     if ((x+y)> MAXGAMMA) {
458         return exp(logGamma(x) + logGamma(y) - logGamma(x+y));
459     } else return gamma(x)*gamma(y)/gamma(x+y);
460 }
461 
462 unittest {
463     test(isIdentical(beta(NaN(0xABC), 4), NaN(0xABC)));
464     test(isIdentical(beta(2, NaN(0xABC)), NaN(0xABC)));
465 }
466 
467 /** Incomplete beta integral
468  *
469  * Returns incomplete beta integral of the arguments, evaluated
470  * from zero to x. The regularized incomplete beta function is defined as
471  *
472  * betaIncomplete(a, b, x) = &Gamma;(a+b)/(&Gamma;(a) &Gamma;(b)) *
473  * $(INTEGRATE 0, x) $(POWER t, a-1)$(POWER (1-t),b-1) dt
474  *
475  * and is the same as the the cumulative distribution function.
476  *
477  * The domain of definition is 0 <= x <= 1.  In this
478  * implementation a and b are restricted to positive values.
479  * The integral from x to 1 may be obtained by the symmetry
480  * relation
481  *
482  *    betaIncompleteCompl(a, b, x )  =  betaIncomplete( b, a, 1-x )
483  *
484  * The integral is evaluated by a continued fraction expansion
485  * or, when b*x is small, by a power series.
486  */
487 real betaIncomplete(real aa, real bb, real xx )
488 {
489     if (!(aa>0 && bb>0)) {
490          if (isNaN(aa)) return aa;
491          if (isNaN(bb)) return bb;
492          return NaN(TANGO_NAN.BETA_DOMAIN); // domain error
493     }
494     if (!(xx>0 && xx<1.0)) {
495         if (isNaN(xx)) return xx;
496         if ( xx == 0.0L ) return 0.0;
497         if ( xx == 1.0L )  return 1.0;
498         return NaN(TANGO_NAN.BETA_DOMAIN); // domain error
499     }
500     if ( (bb * xx) <= 1.0L && xx <= 0.95L)   {
501         return betaDistPowerSeries(aa, bb, xx);
502     }
503     real x;
504     real xc; // = 1 - x
505 
506     real a, b;
507     int flag = 0;
508 
509     /* Reverse a and b if x is greater than the mean. */
510     if( xx > (aa/(aa+bb)) ) {
511         // here x > aa/(aa+bb) and (bb*x>1 or x>0.95)
512         flag = 1;
513         a = bb;
514         b = aa;
515         xc = xx;
516         x = 1.0L - xx;
517     } else {
518         a = aa;
519         b = bb;
520         xc = 1.0L - xx;
521         x = xx;
522     }
523 
524     if( flag == 1 && (b * x) <= 1.0L && x <= 0.95L) {
525         // here xx > aa/(aa+bb) and  ((bb*xx>1) or xx>0.95) and (aa*(1-xx)<=1) and xx > 0.05
526         return 1.0 - betaDistPowerSeries(a, b, x); // note loss of precision
527     }
528 
529     real w;
530     // Choose expansion for optimal convergence
531     // One is for x * (a+b+2) < (a+1),
532     // the other is for x * (a+b+2) > (a+1).
533     real y = x * (a+b-2.0L) - (a-1.0L);
534     if( y < 0.0L ) {
535         w = betaDistExpansion1( a, b, x );
536     } else {
537         w = betaDistExpansion2( a, b, x ) / xc;
538     }
539 
540     /* Multiply w by the factor
541          a      b
542         x  (1-x)   Gamma(a+b) / ( a Gamma(a) Gamma(b) ) .   */
543 
544     y = a * log(x);
545     real t = b * log(xc);
546     if ( (a+b) < MAXGAMMA && fabs(y) < MAXLOG && fabs(t) < MAXLOG ) {
547         t = pow(xc,b);
548         t *= pow(x,a);
549         t /= a;
550         t *= w;
551         t *= gamma(a+b) / (gamma(a) * gamma(b));
552     } else {
553         /* Resort to logarithms.  */
554         y += t + logGamma(a+b) - logGamma(a) - logGamma(b);
555         y += log(w/a);
556 
557         t = exp(y);
558 /+
559         // There seems to be a bug in Cephes at this point.
560         // Problems occur for y > MAXLOG, not y < MINLOG.
561         if( y < MINLOG ) {
562             t = 0.0L;
563         } else {
564             t = exp(y);
565         }
566 +/
567     }
568     if( flag == 1 ) {
569 /+   // CEPHES includes this code, but I think it is erroneous.
570         if( t <= real.epsilon ) {
571             t = 1.0L - real.epsilon;
572         } else
573 +/
574         t = 1.0L - t;
575     }
576     return t;
577 }
578 
579 /** Inverse of incomplete beta integral
580  *
581  * Given y, the function finds x such that
582  *
583  *  betaIncomplete(a, b, x) == y
584  *
585  *  Newton iterations or interval halving is used.
586  */
587 real betaIncompleteInv(real aa, real bb, real yy0 )
588 {
589     real a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;
590     int i, rflg, dir, nflg;
591 
592     if (isNaN(yy0)) return yy0;
593     if (isNaN(aa)) return aa;
594     if (isNaN(bb)) return bb;
595     if( yy0 <= 0.0L )
596         return 0.0L;
597     if( yy0 >= 1.0L )
598         return 1.0L;
599     x0 = 0.0L;
600     yl = 0.0L;
601     x1 = 1.0L;
602     yh = 1.0L;
603     if( aa <= 1.0L || bb <= 1.0L ) {
604         dithresh = 1.0e-7L;
605         rflg = 0;
606         a = aa;
607         b = bb;
608         y0 = yy0;
609         x = a/(a+b);
610         y = betaIncomplete( a, b, x );
611         nflg = 0;
612         goto ihalve;
613     } else {
614         nflg = 0;
615         dithresh = 1.0e-4L;
616     }
617 
618     /* approximation to inverse function */
619 
620     yp = -normalDistributionInvImpl( yy0 );
621 
622     if( yy0 > 0.5L ) {
623         rflg = 1;
624         a = bb;
625         b = aa;
626         y0 = 1.0L - yy0;
627         yp = -yp;
628     } else {
629         rflg = 0;
630         a = aa;
631         b = bb;
632         y0 = yy0;
633     }
634 
635     lgm = (yp * yp - 3.0L)/6.0L;
636     x = 2.0L/( 1.0L/(2.0L * a-1.0L)  +  1.0L/(2.0L * b - 1.0L) );
637     d = yp * sqrt( x + lgm ) / x
638         - ( 1.0L/(2.0L * b - 1.0L) - 1.0L/(2.0L * a - 1.0L) )
639         * (lgm + (5.0L/6.0L) - 2.0L/(3.0L * x));
640     d = 2.0L * d;
641     if( d < MINLOG ) {
642         x = 1.0L;
643         goto under;
644     }
645     x = a/( a + b * exp(d) );
646     y = betaIncomplete( a, b, x );
647     yp = (y - y0)/y0;
648     if( fabs(yp) < 0.2 )
649         goto newt;
650 
651     /* Resort to interval halving if not close enough. */
652 ihalve:
653 
654     dir = 0;
655     di = 0.5L;
656     for( i=0; i<400; i++ ) {
657         if( i != 0 ) {
658             x = x0  +  di * (x1 - x0);
659             if( x == 1.0L ) {
660                 x = 1.0L - real.epsilon;
661             }
662             if( x == 0.0L ) {
663                 di = 0.5;
664                 x = x0  +  di * (x1 - x0);
665                 if( x == 0.0 )
666                     goto under;
667             }
668             y = betaIncomplete( a, b, x );
669             yp = (x1 - x0)/(x1 + x0);
670             if( fabs(yp) < dithresh )
671                 goto newt;
672             yp = (y-y0)/y0;
673             if( fabs(yp) < dithresh )
674                 goto newt;
675         }
676         if( y < y0 ) {
677             x0 = x;
678             yl = y;
679             if( dir < 0 ) {
680                 dir = 0;
681                 di = 0.5L;
682             } else if( dir > 3 )
683                 di = 1.0L - (1.0L - di) * (1.0L - di);
684             else if( dir > 1 )
685                 di = 0.5L * di + 0.5L;
686             else
687                 di = (y0 - y)/(yh - yl);
688             dir += 1;
689             if( x0 > 0.95L ) {
690                 if( rflg == 1 ) {
691                     rflg = 0;
692                     a = aa;
693                     b = bb;
694                     y0 = yy0;
695                 } else {
696                     rflg = 1;
697                     a = bb;
698                     b = aa;
699                     y0 = 1.0 - yy0;
700                 }
701                 x = 1.0L - x;
702                 y = betaIncomplete( a, b, x );
703                 x0 = 0.0;
704                 yl = 0.0;
705                 x1 = 1.0;
706                 yh = 1.0;
707                 goto ihalve;
708             }
709         } else {
710             x1 = x;
711             if( rflg == 1 && x1 < real.epsilon ) {
712                 x = 0.0L;
713                 goto done;
714             }
715             yh = y;
716             if( dir > 0 ) {
717                 dir = 0;
718                 di = 0.5L;
719             }
720             else if( dir < -3 )
721                 di = di * di;
722             else if( dir < -1 )
723                 di = 0.5L * di;
724             else
725                 di = (y - y0)/(yh - yl);
726             dir -= 1;
727             }
728         }
729     // loss of precision has occurred
730 
731     //mtherr( "incbil", PLOSS );
732     if( x0 >= 1.0L ) {
733         x = 1.0L - real.epsilon;
734         goto done;
735     }
736     if( x <= 0.0L ) {
737 under:
738         // underflow has occurred
739         //mtherr( "incbil", UNDERFLOW );
740         x = 0.0L;
741         goto done;
742     }
743 
744 newt:
745 
746     if ( nflg ) {
747         goto done;
748     }
749     nflg = 1;
750     lgm = logGamma(a+b) - logGamma(a) - logGamma(b);
751 
752     for( i=0; i<15; i++ ) {
753         /* Compute the function at this point. */
754         if ( i != 0 )
755             y = betaIncomplete(a,b,x);
756         if ( y < yl ) {
757             x = x0;
758             y = yl;
759         } else if( y > yh ) {
760             x = x1;
761             y = yh;
762         } else if( y < y0 ) {
763             x0 = x;
764             yl = y;
765         } else {
766             x1 = x;
767             yh = y;
768         }
769         if( x == 1.0L || x == 0.0L )
770             break;
771         /* Compute the derivative of the function at this point. */
772         d = (a - 1.0L) * log(x) + (b - 1.0L) * log(1.0L - x) + lgm;
773         if ( d < MINLOG ) {
774             goto done;
775         }
776         if ( d > MAXLOG ) {
777             break;
778         }
779         d = exp(d);
780         /* Compute the step to the next approximation of x. */
781         d = (y - y0)/d;
782         xt = x - d;
783         if ( xt <= x0 ) {
784             y = (x - x0) / (x1 - x0);
785             xt = x0 + 0.5L * y * (x - x0);
786             if( xt <= 0.0L )
787                 break;
788         }
789         if ( xt >= x1 ) {
790             y = (x1 - x) / (x1 - x0);
791             xt = x1 - 0.5L * y * (x1 - x);
792             if ( xt >= 1.0L )
793                 break;
794         }
795         x = xt;
796         if ( fabs(d/x) < (128.0L * real.epsilon) )
797             goto done;
798         }
799     /* Did not converge.  */
800     dithresh = 256.0L * real.epsilon;
801     goto ihalve;
802 
803 done:
804     if ( rflg ) {
805         if( x <= real.epsilon )
806             x = 1.0L - real.epsilon;
807         else
808             x = 1.0L - x;
809     }
810     return x;
811 }
812 
813 unittest { // also tested by the normal distribution
814   // check NaN propagation
815   test(isIdentical(betaIncomplete(NaN(0xABC),2,3), NaN(0xABC)));
816   test(isIdentical(betaIncomplete(7,NaN(0xABC),3), NaN(0xABC)));
817   test(isIdentical(betaIncomplete(7,15,NaN(0xABC)), NaN(0xABC)));
818   test(isIdentical(betaIncompleteInv(NaN(0xABC),1,17), NaN(0xABC)));
819   test(isIdentical(betaIncompleteInv(2,NaN(0xABC),8), NaN(0xABC)));
820   test(isIdentical(betaIncompleteInv(2,3, NaN(0xABC)), NaN(0xABC)));
821 
822   test(isNaN(betaIncomplete(-1, 2, 3)));
823 
824   test(betaIncomplete(1, 2, 0)==0);
825   test(betaIncomplete(1, 2, 1)==1);
826   test(isNaN(betaIncomplete(1, 2, 3)));
827   test(betaIncompleteInv(1, 1, 0)==0);
828   test(betaIncompleteInv(1, 1, 1)==1);
829 
830   // Test some values against Microsoft Excel 2003.
831 
832   test(fabs(betaIncomplete(8, 10, 0.2) - 0.010_934_315_236_957_2L) < 0.000_000_000_5);
833   test(fabs(betaIncomplete(2, 2.5, 0.9) - 0.989_722_597_604_107L) < 0.000_000_000_000_5);
834   test(fabs(betaIncomplete(1000, 800, 0.5) - 1.17914088832798E-06L) < 0.000_000_05e-6);
835 
836   test(fabs(betaIncomplete(0.0001, 10000, 0.0001) - 0.999978059369989L) < 0.000_000_000_05);
837 
838   test(fabs(betaIncompleteInv(5, 10, 0.2) - 0.229121208190918L) < 0.000_000_5L);
839   test(fabs(betaIncompleteInv(4, 7, 0.8) - 0.483657360076904L) < 0.000_000_5L);
840 
841     // Coverage tests. I don't have correct values for these tests, but
842     // these values cover most of the code, so they are useful for
843     // regression testing.
844     // Extensive testing failed to increase the coverage. It seems likely that about
845     // half the code in this function is unnecessary; there is potential for
846     // significant improvement over the original CEPHES code.
847 
848 // Excel 2003 gives clearly erroneous results (betadist>1) when a and x are tiny and b is huge.
849 // The correct results are for these next tests are unknown.
850 
851 //    real testpoint1 = betaIncomplete(1e-10, 5e20, 8e-21);
852 //    assert(testpoint1 == 0x1.ffff_ffff_c906_404cp-1L);
853 
854     test(betaIncomplete(0.01, 327726.7, 0.545113) == 1.0);
855     test(betaIncompleteInv(0.01, 8e-48, 5.45464e-20)==1-real.epsilon);
856     test(betaIncompleteInv(0.01, 8e-48, 9e-26)==1-real.epsilon);
857 
858     test(betaIncomplete(0.01, 498.437, 0.0121433) == 0x1.ffff_8f72_19197402p-1);
859     test(1- betaIncomplete(0.01, 328222, 4.0375e-5) == 0x1.5f62926b4p-30);
860     version(FailsOnLinux)  test(betaIncompleteInv(0x1.b3d151fbba0eb18p+1, 1.2265e-19, 2.44859e-18)==0x1.c0110c8531d0952cp-1);
861     version(FailsOnLinux)  test(betaIncompleteInv(0x1.ff1275ae5b939bcap-41, 4.6713e18, 0.0813601)==0x1.f97749d90c7adba8p-63);
862     real a1;
863     a1 = 3.40483;
864     version(FailsOnLinux)  test(betaIncompleteInv(a1, 4.0640301659679627772e19L, 0.545113)== 0x1.ba8c08108aaf5d14p-109);
865     real b1;
866     b1= 2.82847e-25;
867     version(FailsOnLinux)  test(betaIncompleteInv(0.01, b1, 9e-26) == 0x1.549696104490aa9p-830);
868 
869     // --- Problematic cases ---
870     // This is a situation where the series expansion fails to converge
871     test( isNaN(betaIncompleteInv(0.12167, 4.0640301659679627772e19L, 0.0813601)));
872     // This next result is almost certainly erroneous.
873     test(betaIncomplete(1.16251e20, 2.18e39, 5.45e-20)==-real.infinity);
874 }
875 
876 private {
877 // Implementation functions
878 
879 // Continued fraction expansion #1 for incomplete beta integral
880 // Use when x < (a+1)/(a+b+2)
881 real betaDistExpansion1(real a, real b, real x )
882 {
883     real xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
884     real k1, k2, k3, k4, k5, k6, k7, k8;
885     real r, t, ans;
886     int n;
887 
888     k1 = a;
889     k2 = a + b;
890     k3 = a;
891     k4 = a + 1.0L;
892     k5 = 1.0L;
893     k6 = b - 1.0L;
894     k7 = k4;
895     k8 = a + 2.0L;
896 
897     pkm2 = 0.0L;
898     qkm2 = 1.0L;
899     pkm1 = 1.0L;
900     qkm1 = 1.0L;
901     ans = 1.0L;
902     r = 1.0L;
903     n = 0;
904     static immutable real thresh = 3.0L * real.epsilon;
905     do  {
906         xk = -( x * k1 * k2 )/( k3 * k4 );
907         pk = pkm1 +  pkm2 * xk;
908         qk = qkm1 +  qkm2 * xk;
909         pkm2 = pkm1;
910         pkm1 = pk;
911         qkm2 = qkm1;
912         qkm1 = qk;
913 
914         xk = ( x * k5 * k6 )/( k7 * k8 );
915         pk = pkm1 +  pkm2 * xk;
916         qk = qkm1 +  qkm2 * xk;
917         pkm2 = pkm1;
918         pkm1 = pk;
919         qkm2 = qkm1;
920         qkm1 = qk;
921 
922         if( qk != 0.0L )
923             r = pk/qk;
924         if( r != 0.0L ) {
925             t = fabs( (ans - r)/r );
926             ans = r;
927         } else {
928            t = 1.0L;
929         }
930 
931         if( t < thresh )
932             return ans;
933 
934         k1 += 1.0L;
935         k2 += 1.0L;
936         k3 += 2.0L;
937         k4 += 2.0L;
938         k5 += 1.0L;
939         k6 -= 1.0L;
940         k7 += 2.0L;
941         k8 += 2.0L;
942 
943         if( (fabs(qk) + fabs(pk)) > BETA_BIG ) {
944             pkm2 *= BETA_BIGINV;
945             pkm1 *= BETA_BIGINV;
946             qkm2 *= BETA_BIGINV;
947             qkm1 *= BETA_BIGINV;
948             }
949         if( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) {
950             pkm2 *= BETA_BIG;
951             pkm1 *= BETA_BIG;
952             qkm2 *= BETA_BIG;
953             qkm1 *= BETA_BIG;
954             }
955         }
956     while( ++n < 400 );
957 // loss of precision has occurred
958 // mtherr( "incbetl", PLOSS );
959     return ans;
960 }
961 
962 // Continued fraction expansion #2 for incomplete beta integral
963 // Use when x > (a+1)/(a+b+2)
964 real betaDistExpansion2(real a, real b, real x )
965 {
966     real  xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
967     real k1, k2, k3, k4, k5, k6, k7, k8;
968     real r, t, ans, z;
969 
970     k1 = a;
971     k2 = b - 1.0L;
972     k3 = a;
973     k4 = a + 1.0L;
974     k5 = 1.0L;
975     k6 = a + b;
976     k7 = a + 1.0L;
977     k8 = a + 2.0L;
978 
979     pkm2 = 0.0L;
980     qkm2 = 1.0L;
981     pkm1 = 1.0L;
982     qkm1 = 1.0L;
983     z = x / (1.0L-x);
984     ans = 1.0L;
985     r = 1.0L;
986     int n = 0;
987     static immutable real thresh = 3.0L * real.epsilon;
988     do {
989 
990         xk = -( z * k1 * k2 )/( k3 * k4 );
991         pk = pkm1 +  pkm2 * xk;
992         qk = qkm1 +  qkm2 * xk;
993         pkm2 = pkm1;
994         pkm1 = pk;
995         qkm2 = qkm1;
996         qkm1 = qk;
997 
998         xk = ( z * k5 * k6 )/( k7 * k8 );
999         pk = pkm1 +  pkm2 * xk;
1000         qk = qkm1 +  qkm2 * xk;
1001         pkm2 = pkm1;
1002         pkm1 = pk;
1003         qkm2 = qkm1;
1004         qkm1 = qk;
1005 
1006         if( qk != 0.0L )
1007             r = pk/qk;
1008         if( r != 0.0L ) {
1009             t = fabs( (ans - r)/r );
1010             ans = r;
1011         } else
1012             t = 1.0L;
1013 
1014         if( t < thresh )
1015             return ans;
1016         k1 += 1.0L;
1017         k2 -= 1.0L;
1018         k3 += 2.0L;
1019         k4 += 2.0L;
1020         k5 += 1.0L;
1021         k6 += 1.0L;
1022         k7 += 2.0L;
1023         k8 += 2.0L;
1024 
1025         if( (fabs(qk) + fabs(pk)) > BETA_BIG ) {
1026             pkm2 *= BETA_BIGINV;
1027             pkm1 *= BETA_BIGINV;
1028             qkm2 *= BETA_BIGINV;
1029             qkm1 *= BETA_BIGINV;
1030         }
1031         if( (fabs(qk) < BETA_BIGINV) || (fabs(pk) < BETA_BIGINV) ) {
1032             pkm2 *= BETA_BIG;
1033             pkm1 *= BETA_BIG;
1034             qkm2 *= BETA_BIG;
1035             qkm1 *= BETA_BIG;
1036         }
1037     } while( ++n < 400 );
1038 // loss of precision has occurred
1039 //mtherr( "incbetl", PLOSS );
1040     return ans;
1041 }
1042 
1043 /* Power series for incomplete gamma integral.
1044    Use when b*x is small.  */
1045 real betaDistPowerSeries(real a, real b, real x )
1046 {
1047     real ai = 1.0L / a;
1048     real u = (1.0L - b) * x;
1049     real v = u / (a + 1.0L);
1050     real t1 = v;
1051     real t = u;
1052     real n = 2.0L;
1053     real s = 0.0L;
1054     real z = real.epsilon * ai;
1055     while( fabs(v) > z ) {
1056         u = (n - b) * x / n;
1057         t *= u;
1058         v = t / (a + n);
1059         s += v;
1060         n += 1.0L;
1061     }
1062     s += t1;
1063     s += ai;
1064 
1065     u = a * log(x);
1066     if ( (a+b) < MAXGAMMA && fabs(u) < MAXLOG ) {
1067         t = gamma(a+b)/(gamma(a)*gamma(b));
1068         s = s * t * pow(x,a);
1069     } else {
1070         t = logGamma(a+b) - logGamma(a) - logGamma(b) + u + log(s);
1071 
1072         if( t < MINLOG ) {
1073             s = 0.0L;
1074         } else
1075             s = exp(t);
1076     }
1077     return s;
1078 }
1079 
1080 }
1081 
1082 /***************************************
1083  *  Incomplete gamma integral and its complement
1084  *
1085  * These functions are defined by
1086  *
1087  *   gammaIncomplete = ( $(INTEGRATE 0, x) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
1088  *
1089  *  gammaIncompleteCompl(a,x)   =   1 - gammaIncomplete(a,x)
1090  * = ($(INTEGRATE x, &infin;) $(POWER e, -t) $(POWER t, a-1) dt )/ $(GAMMA)(a)
1091  *
1092  * In this implementation both arguments must be positive.
1093  * The integral is evaluated by either a power series or
1094  * continued fraction expansion, depending on the relative
1095  * values of a and x.
1096  */
1097 real gammaIncomplete(real a, real x )
1098 {
1099     verify(x >= 0);
1100     verify(a > 0);
1101 
1102     /* left tail of incomplete gamma function:
1103      *
1104      *          inf.      k
1105      *   a  -x   -       x
1106      *  x  e     >   ----------
1107      *           -     -
1108      *          k=0   | (a+k+1)
1109      *
1110      */
1111     if (x==0)
1112        return 0.0L;
1113 
1114     if ( (x > 1.0L) && (x > a ) )
1115         return 1.0L - gammaIncompleteCompl(a,x);
1116 
1117     real ax = a * log(x) - x - logGamma(a);
1118 /+
1119     if( ax < MINLOGL ) return 0; // underflow
1120     //  { mtherr( "igaml", UNDERFLOW ); return( 0.0L ); }
1121 +/
1122     ax = exp(ax);
1123 
1124     /* power series */
1125     real r = a;
1126     real c = 1.0L;
1127     real ans = 1.0L;
1128 
1129     do  {
1130         r += 1.0L;
1131         c *= x/r;
1132         ans += c;
1133     } while( c/ans > real.epsilon );
1134 
1135     return ans * ax/a;
1136 }
1137 
1138 /** ditto */
1139 real gammaIncompleteCompl(real a, real x )
1140 {
1141     verify(x >= 0);
1142     verify(a > 0);
1143 
1144     if (x==0)
1145        return 1.0L;
1146     if ( (x < 1.0L) || (x < a) )
1147         return 1.0L - gammaIncomplete(a,x);
1148 
1149    // DAC (Cephes bug fix): This is necessary to avoid
1150    // spurious nans, eg
1151    // log(x)-x = NaN when x = real.infinity
1152     static immutable real MAXLOGL =  1.1356523406294143949492E4L;
1153    if (x > MAXLOGL) return 0; // underflow
1154 
1155     real ax = a * log(x) - x - logGamma(a);
1156 //const real MINLOGL = -1.1355137111933024058873E4L;
1157 //  if ( ax < MINLOGL ) return 0; // underflow;
1158     ax = exp(ax);
1159 
1160 
1161     /* continued fraction */
1162     real y = 1.0L - a;
1163     real z = x + y + 1.0L;
1164     real c = 0.0L;
1165 
1166     real pk, qk, t;
1167 
1168     real pkm2 = 1.0L;
1169     real qkm2 = x;
1170     real pkm1 = x + 1.0L;
1171     real qkm1 = z * x;
1172     real ans = pkm1/qkm1;
1173 
1174     do  {
1175         c += 1.0L;
1176         y += 1.0L;
1177         z += 2.0L;
1178         real yc = y * c;
1179         pk = pkm1 * z  -  pkm2 * yc;
1180         qk = qkm1 * z  -  qkm2 * yc;
1181         if( qk != 0.0L ) {
1182             real r = pk/qk;
1183             t = fabs( (ans - r)/r );
1184             ans = r;
1185         } else {
1186             t = 1.0L;
1187         }
1188     pkm2 = pkm1;
1189         pkm1 = pk;
1190         qkm2 = qkm1;
1191         qkm1 = qk;
1192 
1193         static immutable real BIG = 9.223372036854775808e18L;
1194 
1195         if ( fabs(pk) > BIG ) {
1196             pkm2 /= BIG;
1197             pkm1 /= BIG;
1198             qkm2 /= BIG;
1199             qkm1 /= BIG;
1200         }
1201     } while ( t > real.epsilon );
1202 
1203     return ans * ax;
1204 }
1205 
1206 /** Inverse of complemented incomplete gamma integral
1207  *
1208  * Given a and y, the function finds x such that
1209  *
1210  *  gammaIncompleteCompl( a, x ) = p.
1211  *
1212  * Starting with the approximate value x = a $(POWER t, 3), where
1213  * t = 1 - d - normalDistributionInv(p) sqrt(d),
1214  * and d = 1/9a,
1215  * the routine performs up to 10 Newton iterations to find the
1216  * root of incompleteGammaCompl(a,x) - p = 0.
1217  */
1218 real gammaIncompleteComplInv(real a, real p)
1219 {
1220     verify(p>=0 && p<= 1);
1221     verify(a>0);
1222 
1223     if (p==0) return real.infinity;
1224 
1225     real y0 = p;
1226     static immutable real MAXLOGL =  1.1356523406294143949492E4L;
1227     real x0, x1, x, yl, yh, y, d, lgm, dithresh;
1228     int i, dir;
1229 
1230     /* bound the solution */
1231     x0 = real.max;
1232     yl = 0.0L;
1233     x1 = 0.0L;
1234     yh = 1.0L;
1235     dithresh = 4.0 * real.epsilon;
1236 
1237     /* approximation to inverse function */
1238     d = 1.0L/(9.0L*a);
1239     y = 1.0L - d - normalDistributionInvImpl(y0) * sqrt(d);
1240     x = a * y * y * y;
1241 
1242     lgm = logGamma(a);
1243 
1244     for( i=0; i<10; i++ ) {
1245         if( x > x0 || x < x1 )
1246             goto ihalve;
1247         y = gammaIncompleteCompl(a,x);
1248         if ( y < yl || y > yh )
1249             goto ihalve;
1250         if ( y < y0 ) {
1251             x0 = x;
1252             yl = y;
1253         } else {
1254             x1 = x;
1255             yh = y;
1256         }
1257     /* compute the derivative of the function at this point */
1258         d = (a - 1.0L) * log(x0) - x0 - lgm;
1259         if ( d < -MAXLOGL )
1260             goto ihalve;
1261         d = -exp(d);
1262     /* compute the step to the next approximation of x */
1263         d = (y - y0)/d;
1264         x = x - d;
1265         if ( i < 3 ) continue;
1266         if ( fabs(d/x) < dithresh ) return x;
1267     }
1268 
1269     /* Resort to interval halving if Newton iteration did not converge. */
1270 ihalve:
1271     d = 0.0625L;
1272     if ( x0 == real.max ) {
1273         if( x <= 0.0L )
1274             x = 1.0L;
1275         while( x0 == real.max ) {
1276             x = (1.0L + d) * x;
1277             y = gammaIncompleteCompl( a, x );
1278             if ( y < y0 ) {
1279                 x0 = x;
1280                 yl = y;
1281                 break;
1282             }
1283             d = d + d;
1284         }
1285     }
1286     d = 0.5L;
1287     dir = 0;
1288 
1289     for( i=0; i<400; i++ ) {
1290         x = x1  +  d * (x0 - x1);
1291         y = gammaIncompleteCompl( a, x );
1292         lgm = (x0 - x1)/(x1 + x0);
1293         if ( fabs(lgm) < dithresh )
1294             break;
1295         lgm = (y - y0)/y0;
1296         if ( fabs(lgm) < dithresh )
1297             break;
1298         if ( x <= 0.0L )
1299             break;
1300         if ( y > y0 ) {
1301             x1 = x;
1302             yh = y;
1303             if ( dir < 0 ) {
1304                 dir = 0;
1305                 d = 0.5L;
1306             } else if ( dir > 1 )
1307                 d = 0.5L * d + 0.5L;
1308             else
1309                 d = (y0 - yl)/(yh - yl);
1310             dir += 1;
1311         } else {
1312             x0 = x;
1313             yl = y;
1314             if ( dir > 0 ) {
1315                 dir = 0;
1316                 d = 0.5L;
1317             } else if ( dir < -1 )
1318                 d = 0.5L * d;
1319             else
1320                 d = (y0 - yl)/(yh - yl);
1321             dir -= 1;
1322         }
1323     }
1324     /+
1325     if( x == 0.0L )
1326         mtherr( "igamil", UNDERFLOW );
1327     +/
1328     return x;
1329 }
1330 
1331 unittest {
1332     //Values from Excel's GammaInv(1-p, x, 1)
1333     test(fabs(gammaIncompleteComplInv(1, 0.5) - 0.693147188044814) < 0.00000005);
1334     test(fabs(gammaIncompleteComplInv(12, 0.99) - 5.42818075054289) < 0.00000005);
1335     test(fabs(gammaIncompleteComplInv(100, 0.8) - 91.5013985848288L) < 0.000005);
1336 
1337     test(gammaIncomplete(1, 0)==0);
1338     test(gammaIncompleteCompl(1, 0)==1);
1339     test(gammaIncomplete(4545, real.infinity)==1);
1340 
1341     // Values from Excel's (1-GammaDist(x, alpha, 1, TRUE))
1342 
1343     test(fabs(1.0L-gammaIncompleteCompl(0.5, 2) - 0.954499729507309L) < 0.00000005);
1344     test(fabs(gammaIncomplete(0.5, 2) - 0.954499729507309L) < 0.00000005);
1345     // Fixed Cephes bug:
1346     test(gammaIncompleteCompl(384, real.infinity)==0);
1347     test(gammaIncompleteComplInv(3, 0)==real.infinity);
1348 }
1349 
1350 /** Digamma function
1351 *
1352 *  The digamma function is the logarithmic derivative of the gamma function.
1353 *
1354 *  digamma(x) = d/dx logGamma(x)
1355 *
1356 */
1357 real digamma(real x)
1358 {
1359    // Based on CEPHES, Stephen L. Moshier.
1360 
1361     // DAC: These values are Bn / n for n=2,4,6,8,10,12,14.
1362     static immutable real [] Bn_n  = [
1363         1.0L/(6*2), -1.0L/(30*4), 1.0L/(42*6), -1.0L/(30*8),
1364         5.0L/(66*10), -691.0L/(2730*12), 7.0L/(6*14) ];
1365 
1366     real p, q, nz, s, w, y, z;
1367     int i, n, negative;
1368 
1369     negative = 0;
1370     nz = 0.0;
1371 
1372     if ( x <= 0.0 ) {
1373         negative = 1;
1374         q = x;
1375         p = floor(q);
1376         if( p == q ) {
1377             return NaN(TANGO_NAN.GAMMA_POLE); // singularity.
1378         }
1379     /* Remove the zeros of tan(PI x)
1380      * by subtracting the nearest integer from x
1381      */
1382         nz = q - p;
1383         if ( nz != 0.5 ) {
1384             if ( nz > 0.5 ) {
1385                 p += 1.0;
1386                 nz = q - p;
1387             }
1388             nz = PI/tan(PI*nz);
1389         } else {
1390             nz = 0.0;
1391         }
1392         x = 1.0 - x;
1393     }
1394 
1395     // check for small positive integer
1396     if ((x <= 13.0) && (x == floor(x)) ) {
1397         y = 0.0;
1398         n = rndint(x);
1399         // DAC: CEPHES bugfix. Cephes did this in reverse order, which
1400         // created a larger roundoff error.
1401         for (i=n-1; i>0; --i) {
1402             y+=1.0L/i;
1403         }
1404         y -= EULERGAMMA;
1405         goto done;
1406     }
1407 
1408     s = x;
1409     w = 0.0;
1410     while ( s < 10.0 ) {
1411         w += 1.0/s;
1412         s += 1.0;
1413     }
1414 
1415     if ( s < 1.0e17 ) {
1416         z = 1.0/(s * s);
1417         y = z * poly(z, Bn_n);
1418     } else
1419         y = 0.0;
1420 
1421     y = log(s)  -  0.5L/s  -  y  -  w;
1422 
1423 done:
1424     if ( negative ) {
1425         y -= nz;
1426     }
1427     return y;
1428 }
1429 
1430 unittest {
1431     // Exact values
1432     test(digamma(1)== -EULERGAMMA);
1433     test(feqrel(digamma(0.25), -PI/2 - 3* LN2 - EULERGAMMA)>=real.mant_dig-7);
1434     test(feqrel(digamma(1.0L/6), -PI/2 *sqrt(3.0L) - 2* LN2 -1.5*log(3.0L) - EULERGAMMA)>=real.mant_dig-7);
1435     test(isNaN(digamma(-5)));
1436     test(feqrel(digamma(2.5), -EULERGAMMA - 2*LN2 + 2.0 + 2.0L/3)>=real.mant_dig-9);
1437     test(isIdentical(digamma(NaN(0xABC)), NaN(0xABC)));
1438 
1439     for (int k=1; k<40; ++k) {
1440         real y=0;
1441         for (int u=k; u>=1; --u) {
1442             y+= 1.0L/u;
1443         }
1444         test(feqrel(digamma(k+1),-EULERGAMMA + y) >=real.mant_dig-2);
1445     }
1446 
1447 //    printf("%d %La %La %d %d\n", k+1, digamma(k+1), -EULERGAMMA + x, feqrel(digamma(k+1),-EULERGAMMA + y), feqrel(digamma(k+1), -EULERGAMMA + x));
1448 }